История лазера - Марио Бертолотти Страница 49

Книгу История лазера - Марио Бертолотти читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

История лазера - Марио Бертолотти читать онлайн бесплатно

История лазера - Марио Бертолотти - читать книгу онлайн бесплатно, автор Марио Бертолотти

В своих исследованиях в 1913 г., немедленно после обсуждений теории атома водорода, Бор занялся атомами, содержащими несколько электронов. Он представлял эти атомы в виде системы, состоящей из положительно заряженного ядра, окруженного электронами, движущимися по круговым орбитам, и писал: «Мы будем предполагать, что электроны располагаются... в коаксиальных кольцах, вращающихся вокруг ядра». Проблема была в том, чтобы знать, сколько электронов могло находиться в каждом кольце, так, чтобы конфигурация оставалась стабильной, несмотря на расталкивающие электрические силы между электронами. Бор старался решить эту проблему с помощью классической динамики и начал с выяснения конфигураций простейших атомов. Для гелия, который имеет два электрона, он, справедливо, предположил, что они находятся на одной и той же орбите. Для лития (три электрона) он предположил, все еще справедливо, что два электрона располагаются на внутренней орбите (кольце), а третий располагается на большей орбите (новое кольцо). Для бериллия, который имеет четыре электрона, он предположил, что два электрона располагаются на одном кольце, а два на другом (эта гипотеза также впоследствии оказалась верной). Для атомов с большим числом электронов эти рассмотрения становились очень громоздкими. Наконец, он произвольно установил, что число электронов, располагающихся на внешних кольцах, должно быть равным числу, которым химики определяют валентность элемента.

Атом предполагался плоским, т.е. предполагалось, что ядро и все электроны лежат в одной плоскости. Гипотеза Бора была правдоподобна, но неэффективна, чтобы недвусмысленно определить распределение электронов по разным кольцам вокруг ядра. Эта неопределенность затрудняла подход к пониманию химических и физических свойств элементов, в стремлении получить периодичность, демонстрируемую таблицей Менделеева. Результат, к которому пришел Бор, состоял в том, что число электронов на внутренних кольцах должно увеличиваться с увеличением атомного номера. Это был ошибочный результат, который, однако, в 1913 г. не мог считаться таковым.

Затем Бор направил свое внимание на молекулы и получил правильных результаты для молекулы водорода, но, к удивлению, не такие, как для атома гелия, который также имеет два электрона.

Даже если в начале своей работы Бор и ссылался на эллиптические орбиты, он затем сконцентрировался исключительно на круговых орбитах. Он также ограничил свои обсуждения нерелятивистским случаем, полагая, что скорость электрона мала по сравнению со скоростью света. Когда в 1914 г. американский астроном Г. Куртис (1872—1942) обнаружил малые систематические расхождения между теоретическими значениями длин волн линий водорода, рассчитанными по теории Бора, и экспериментальными значениями, Бор переделал расчеты, введя релятивистское изменение массы электрона. Исправление было в правильном направлении, но поправки были слишком малы, чтобы объяснить наблюдаемые отклонения.

История лазера

Рис. 28. Некоторые примеры орбит электронов вокруг ядра. Наряду с круговой показаны эллиптические орбиты с разными эксцентриситетами


Получилось так, что прусский физик Арнольд Зоммерфельд (1868-1951), который работал в Гёттингене вместе с знаменитым математиком Давидом Гильбертом (1862—1943) и блестяще владел математикой, попробовал в 1915 г. улучшить модель, распространив вычисления на более общий случай, в котором электроны вращаются орбитой вокруг ядер по эллиптическим, а не по круговым орбитам, совсем как планеты вокруг Солнца (рис. 28). При этом состояние каждого электрона в атоме дается тремя числами, называемыми атомными числами. Эти числа были взаимно связанными простыми правилами, характеризовали энергию электрона на орбите и определяли параметры орбиты, из которых получались их формы и ориентации. Устанавливались критерии квантования, которыми могли быть только целые числа. С помощью математического приема решения проблемы получалось, что даже если орбиты электронов были с огромным увеличением числа, их возможные энергетические состояния оставались теми же самыми. По многим орбитам с разными параметрами двигались электроны с одной и той же энергией, и это свойство, названное вырождением, обусловливало возможность, что энергетические уровни электрона были все тем же одним уровнем, который Бор вычислял, рассматривая только круговые орбиты.

Зоммерфельд рассматривал проблему релятивистски и нашел, что энергия электрона зависит в этом случае также и от формы орбиты. Таким образом, вырождение снималось, и результат оказывался в согласии с экспериментальными наблюдениями, которые уже были проведены А. А. Майкельсоном, который обнаружил, что каждая линия водорода в серии Бальмера на самом деле представляет несколько очень тесно расположенных линий (тонкая структура). Этот факт не согласовывался с теорией Бора, но первоначально им пренебрегали из-за его исключительной малости.

Кроме того, был еще ряд эффектов, которые нужно было объяснить. Кроме эффекта Зеемана, который уже был нами обсужден, в 1913 г. Иоганн Штарк открыл в своей лаборатории в Технической Высшей Школе г. Аахена, что электрическое поле может расщеплять спектральные линии серии Бальмера на несколько компонент (линий), и это явление не ограничивается только водородом.

Иоганн Штарк (1874—1957) между 1906 г. и 1922 г. преподавал в университетах Гёттингена, Ганновера, Аахена, Грифсвальда и Вюрцбурга. На этом этапе его академическая карьера была прервана и он, несмотря на то, что получил Нобелевскую премию по физике в 1919 г. за его открытие, был отвергнут шестью германскими университетами. Он был непопулярен из-за своего антисемитизма, который привел его к отрицанию квантовых теорий и теории относительности Эйнштейна как порочный продукт «еврейской науки». Вступив в нацистскую партию в 1930 г. и будучи, отвергнут Прусской Академией наук, он в 1933 г. преуспел, став президентом Имперского Института Физики и Технологии. Здесь он старался использовать свою власть для того, чтобы усилить контроль над германской физикой, но вступил в конфликт с политиками и администраторами министерства образования Рейха. Они, решив, что он слишком деструктивен и ненадежен, вынудили его уйти в отставку в 1937 г. Окончательное унижение пришло в 1947 г., когда он был осужден к четырем годам принудительных работ Германским судом в процессе денацификации.

Воздействие электрического поля на спектральные линии было также независимо открыто во Флоренции Антонио Ло Сурдо (1880—1949). Из-за того, что его экспериментальная установка была намного проще, чем та, что использовалась Штарком, он получил лишь качественные результаты, не имея возможности провести точные измерения. Штарк сильно возражал против того, чтобы назвать открытие эффектом Штарка—Ло Сурдо, и не хотел оказывать Ло Сурдо какое-либо доверие.

Немедленно после этого открытия немецкий физик Эмиль Варбург (1846— 1931) и Бор представили в 1914 г. объяснение этого эффекта на основе модели атома Бора. Однако оно давало лишь качественное согласие с экспериментальными результатами, т.е. давало понимание, почему электрическое поле расщепляет энергетические уровни на несколько подуровней, но не давало точных значений этого расщепления.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.