История лазера - Марио Бертолотти Страница 48
История лазера - Марио Бертолотти читать онлайн бесплатно
В Японии, несмотря на интенсивные исследования в области магнетронов и микроволн, разработка радаров тормозилась из-за разногласий между Армией и Флотом и отсутствием централизованных усилий, подобных тем, что были в США.
В Советском Союзе были активные исследования в области магнетронов, но, по-видимому, решающий шаг в сторону использования импульсов, а не непрерывного режима, не был сделан.
В течение войны лучшие английские и американские ученые были вовлечены в исследования по микроволнам и радарам, и в конце войны микроволновые системы легко перешли в исследовательские институты с целью продолжения фундаментальных исследований в этой области. Поэтому в конце войны эти исследования естественным образом оказались связанными с микроволнами.
Взаимодействие микроволн с веществом может привести к переходам между энергетическими уровнями молекул, лежащими близко друг от друга. Малая энергия соответствует энергии микроволновых фотонов. Также микроволны могут взаимодействовать с магнитным моментом электрона (спин) или атомных ядер. В этих случаях магнитное поле волн воздействует на магнитный момент частицы (электрона или ядра) и ориентируют его путем соответствующего изменения энергии. Эти явления взаимодействий между микроволнами и веществом составляют предмет радиоспектроскопии. Радиоспектроскопия естественным образом возникла из разработок радаров и генераторов микроволн во время Второй мировой войны. После войны эти генераторы стали использовать в спектроскопических исследованиях, которые позволяли выявить малые детали молекулярных структур и атомных ядер. Единственным измерением, выполненным до войны с помощью микроволн, было измерение частоты инвертированного перехода в молекуле аммиака, лежащей в сантиметровом диапазоне. Как мы уже говорили, это измерение было выполнено Клитоном и Вильямсом в 1934 г.
Из-за научного интереса эти работы быстро перешли из промышленных лабораторий, где проводились исследования, в университеты, где добывалась информация, относящаяся к фундаментальным проблемам физики и химии. Для этих исследований частотная чистота или когерентность излучения была очень важным свойством. Было необходимым иметь источники, которые испускают одиночную частоту, или, если это невозможно, то, по крайней мере, иметь частоты в очень ограниченном диапазоне, которые не подвержены сильным флуктуациям.
Для лучшего понимания взаимодействий микроволн с веществом нам следует обратиться к дальнейшему развитию спектроскопии.
СПЕКТРОСКОПИЯ: АКТ II
После основополагающей работы Бора в 1913 г. атомы и молекулы были в центре внимания физиков, как теоретиков, так и экспериментаторов. В то же время возросли знания об атомных ядрах благодаря изучению радиоактивности и ядерных реакций, осуществляемых бомбардировкой ядрами водорода (протоны) и гелия (альфа-частицы) более тяжелых ядер.
Если до Бора спектроскопия была, по существу, эмпирической наукой, которая мало продвигалась от составления каталогов длин волн, то новая теория атома стала руководящим принципом интерпретации экспериментальных результатов и, как часто случается, сочетание теории и эксперимента привело к объяснению самых различных наблюдаемых явлений.
Центр тяжести исследований теперь переместился в Германию. Один из наиболее значительных результатов был получен Джеймсом Франком (1882-1964) и Густавом Герцем (1887-1975) в 1913-1914 гг., как раз накануне войны.
Франк был сыном гамбургского банкира. Он получил образование в Гейдельберге и в Берлине и стал заведующим кафедрой экспериментальной физики в Геттингене, которую он оставил в 1933 г. после прихода Гитлера к власти и эмигрировал в США, где стал работать в Чикагском университете. Во время Второй мировой войны принимал участие в атомном проекте, выступая позднее против военного применения.
Густав Герц, также из Гамбурга, был племянником Генриха Герца. Он был тяжело ранен во время войны, и когда возвратился в 1917 г. в Берлин, единственной возможностью для него было бесплатное чтение лекций в университете. В начале 1920-х гг. он поступил во вновь созданную исследовательскую лабораторию Компании Филипс в Голландии. Это была одна из первых промышленных лабораторий, проводивших фундаментальные исследования. В 1925 г. ему было предложено партнерство с университетом г. Галле, а затем стал профессором экспериментальной физики в Берлине с 1928 по 1935 г. Будучи евреем, но был вынужден уйти из университета. С 1928 по 1945 г. он работал в компании Сименс, пережил войну и был интернирован русскими. В 1955 г. он стал директором Института Физики в Лейпциге в ГДР.
Эти два физика задумали остроумный эксперимент, в котором, по их замыслу, можно было определить энергию ионизации атома, т.е. величину той энергии, которую нужно сообщить атому, чтобы освободить его внешние электроны. Сущность эксперимента заключалась в том, чтобы возбуждать атомы ударами электронов, а затем, измеряя энергию, которую электроны теряют при столкновениях, вычислять измененную энергию. Они обнаружили, что получаются последовательные изменения энергии, как показано на рис. 27, где минимумы тока, зарегистрированные при увеличении энергии электрона, соответствуют энергии, которая передается от электронов атомам. Бор дал правильную интерпретацию этим значениям. Они определяют «энергии ионизации», которые в его интерпретации соответствуют энергиям разных возможных орбит электронов в атоме. Таким образом, энергия атома не изменяется электроном, чья энергия недостаточна, чтобы «ионизовать» его, и орбиты электронов в атоме могут иметь вполне определенные значения энергии. Эксперименты Франка и Герца и их интерпретация Бором убедительно продемонстрировали не только существование стационарных состояний, которые постулировались Бором, но также возможность возбуждать их ударами электронов, причем скачки между ними подчиняются фундаментальным законам, выдвинутым Бором.
За эту работу Франк и Герц получили Нобелевскую премию по физике в 1925 г.
Рис. 27. Результат эксперимента Франка и Герца с парами ртути. На графике показана зависимость тока от приложенного напряжения. Из значений напряжений, при которых ток имеет минимумы, можно определить энергии возбуждения электронов в атоме
Несмотря на эти результаты и заявленную цель работы Бора 1913 г. — разработать общую теорию строения атома, эта теория давала строгое и адекватное объяснение только для атомов водорода и водородно-подобных атомов. Все попытки распространить ее на системы с более чем одним электроном были безуспешными. Даже спектр нейтрального гелия, который, как мы говорили, состоит из ядра, вокруг которого вращаются два электрона, не удавалось объяснить.
Одним из достижений теории Бора было объяснение серии линий, которые американский астроном В. Пикеринг (1858—1938) наблюдал в спектрах звезд. Предполагалось, что эти линии принадлежат водороду, поскольку их расположение очень напоминало серию Бальмера, но Бор показал, что на самом деле эти линии принадлежат ионизованному гелию, в котором одиночный электрон связан с ядром, имеющим заряд +2. Эйнштейн был на конференции в Вене в сентябре 1913 г., и когда ему сообщили об этом результате, воскликнул: «Тогда частота света вовсе не зависит от частоты электрона (т.е. от частоты его обращений вокруг ядра). Это огромное достижение. Теория Бора должна быть верной».
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments