Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу Страница 31

Книгу Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу читать онлайн бесплатно

Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу - читать книгу онлайн бесплатно, автор Джефф Форшоу

Мы избежали разговоров о том, как взаимодействуют друг с другом протон и электрон, введя идею потенциала. Это упрощение позволило понять квантование энергии запертых частиц. Но если мы всерьез хотим понять, что происходит, нужно попытаться объяснить механизм «запирания» частиц. Когда частица движется в рассматриваемом нами ящике, можно представить непроницаемую стенку, предположительно состоящую из атомов, так что частица не может пройти сквозь нее из-за взаимодействия с этими атомами. Правильное понимание «непроницаемости» приходит через понимание того, как частицы взаимодействуют друг с другом. Мы говорили, что протон в атоме водорода создает потенциал, в котором движется электрон, и этот потенциал захватывает электрон аналогично тому, как частица удерживается в ящике. Это приводит к более глубокой проблеме, потому что электрон, очевидно, взаимодействует с протоном, и именно это предопределяет «запирание» электрона.

В главе 10 мы увидим, что же необходимо добавить к уже сформулированным квантовым правилам. Эти добавки будут касаться взаимодействия частиц. Пока наши правила очень просты: частицы двигаются, перенося с собой воображаемые часы, стрелки которых переводятся назад точно определенным образом в зависимости от расстояния, на которое перемещаются частицы. Все прыжки частиц разрешены, так что частица может переместиться из точки А в точку В по бесконечному количеству различных траекторий. Каждая траектория приносит в точку В собственный квантовый циферблат, и мы должны сложить их все, чтобы получился единый общий циферблат, который позволит нам определить вероятность нахождения частицы в точке В. Добавление взаимодействий в эту картину оказывается на удивление простым делом. Мы дополняем правила перемещения частиц новым правилом, которое гласит, что частица может испускать или поглощать другую частицу. Если до взаимодействия была одна частица, то после него их может оказаться две; если до взаимодействия частиц было две, после него может остаться только одна. Конечно, если мы собираемся вырабатывать математические формулы для этого, мы обязаны уточнить, какие именно частицы будут сливаться или распадаться и что произойдет после взаимодействия с теми циферблатами, которые несет с собой каждая частица. Это станет темой главы 10, но предпосылки очевидны и так. Если есть правило, по которому электрон в ходе взаимодействия испускает фотон, то существует вероятность того, что электрон в атоме водорода может испустить фотон, потерять энергию и опуститься на более низкий энергетический уровень. Он может также поглотить фотон, приобрести энергию и подняться на более высокий энергетический уровень.

Существование спектральных линий подтверждает, что именно так все и происходит, но далеко не с равной вероятностью, а именно: электрон может испускать фотон и лишаться энергии в любое время, но единственный способ получения энергии и перехода на более высокий энергетический уровень заключается в существовании фотона (или какого-то иного источника энергии), который мог бы с ним столкнуться. В газообразном водороде таких фотонов обычно мало, а расстояние между ними велико. Атом в возбужденном состоянии имеет гораздо больше шансов на испускание фотона, чем на его поглощение. Общий эффект состоит в том, что атомы водорода стремятся выходить из возбужденного состояния (релаксировать), под чем мы понимаем победу испускания над поглощением. Со временем атом возвращается к основному состоянию n = 1. Это правило не может быть общим, поскольку можно постоянно возбуждать атомы, обеспечив контролируемую подкачку энергии. На этом основана технология лазера, ныне используемая повсеместно. Главная идея лазера состоит в закачивании энергии в атомы, приводящем к их возбуждению, и сборе фотонов, испускаемых при потере электронами энергии. Эти фотоны очень полезны для чтения данных высокой четкости, записанных на поверхности CD или DVD: влияние квантовой механики на нашу жизнь весьма многообразно.

В этой главе мы сумели объяснить происхождение спектральных линий, используя простую идею квантованных энергетических уровней. Кажется, нам удалось выработать правильный взгляд на атомы. Но все же кое-что не совсем так. Не хватает последнего кусочка головоломки, без которого невозможно объяснить структуру более тяжелых атомов, чем водород. Если говорить более прозаично, нам также не удастся объяснить, почему мы, собственно, не проваливаемся сквозь землю, что создает проблемы для нашей замечательной теории природы. Объяснение, которое мы ищем, кроется в работах австрийского физика Вольфганга Паули.

7. Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю)

То, что мы не проваливаемся сквозь землю, само по себе несколько удивительно. Объяснять это тем, что земля твердая, не особенно эффективно, во многом благодаря открытию Резерфорда, что атомы – это почти полностью пустое пространство. Ситуация удивляет еще больше, потому что, насколько мы знаем, фундаментальные частицы природы размером не обладают вовсе. Иметь дело с частицами, «не имеющими размера», явно проблематично и, вероятно, даже невозможно. Но ничто из сказанного в предыдущих главах не предполагает и не требует от частиц физической протяженности. Понимание их как действительно точечных объектов необязательно неверно, даже если бросает вызов здравому смыслу – если у читателя остался хоть какой-то здравый смысл на этой стадии книги о квантовой теории. Конечно, весьма возможно, что будущие эксперименты, например на Большом адронном коллайдере, покажут, что электроны и кварки вовсе не истинно элементарные частицы, но нынешние эксперименты этого не подтверждают, поэтому в фундаментальных уравнениях физики частиц нет места для их «размера». Нельзя сказать, что с точечными частицами не возникает проблем – идея конечного заряда, зажатого в бесконечно малый объем, довольно трудна для понимания, – но все же удается каким-то образом обойти теоретические трудности. Похоже, что развитие квантовой теории гравитации – основная проблема фундаментальной физики – намекает на конечный размер, но свидетельств пока попросту недостаточно, чтобы физики отказались от столь полюбившейся идеи элементарных частиц. Подчеркнем еще раз: точечные частицы не имеют размера, поэтому вопрос «Что случится, если я расщеплю электрон надвое?» не имеет никакого смысла – половинки электрона не бывает.

Приятный бонус работы с элементарными фрагментами материи, не имеющими никакого размера, состоит в том, что мы без проблем можем представить, что вся видимая Вселенная когда-то была сжата в объект размером с грейпфрут или даже с булавочную головку. Как бы ни шла кругом голова от таких мыслей – трудно вообразить, как до размеров горошины сжимается гора, не говоря уже о звезде, галактике и тем более 350 миллиардах больших галактик в обозримой Вселенной, – нет никаких причин объявлять такое сжатие невозможным. И действительно, современные теории происхождения Вселенной непосредственно оперируют свойствами, которые она имела в подобном астрономически плотном состоянии. Такие теории на первый взгляд кажутся нелепыми, но имеют ряд подтверждающих свидетельств. В последней главе нам встретятся объекты с плотностью если не как у «Вселенной в булавочной головке», то точно как у «горы в горошине»: белые карлики – объекты с массой звезды и объемом Земли – и нейтронные звезды, имеющие схожую массу и сжатые в идеальные шары размером с крупный город. И это не объекты из научной фантастики; астрономы наблюдают их и проводят точнейшие измерения, а квантовая теория позволяет вычислить их свойства и сравнить с данными наблюдений. Первый шаг на пути к пониманию белых карликов и нейтронных звезд состоит в том, чтобы обратиться к гораздо более прозаичному вопросу, с которого мы и начали эту главу: если Земля – по большей части пустое пространство, то почему мы сквозь нее не проваливаемся?

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.