Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу Страница 30

Книгу Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу читать онлайн бесплатно

Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу - читать книгу онлайн бесплатно, автор Джефф Форшоу

До настоящего времени мы сполна использовали возможности для объяснения положения дел с помощью очень простой картины атома, но вообще-то не так уж верно считать, что электроны свободно передвигаются внутри какого-то ящика, который их ограничивает. Они передвигаются вблизи множества протонов и других электронов, и для лучшего понимания природы атомов мы должны определить, как более точно описать эту среду.

Атомный ящик

Вооружившись понятием потенциала, можно более точно описать атомы. Начнем с простейшего из всех – атома водорода. Он состоит всего из двух частиц – электрона и протона. Протон почти в 2000 раз тяжелее электрона, так что мы можем предположить, что он почти ничего не делает и просто покоится на месте, создавая потенциал, удерживающий электрон.

Протон обладает положительным электрическим зарядом, а электрон – равным ему отрицательным зарядом. Кстати, причина, по которой электрические заряды протона и электрона в точности равны и противоположны друг другу, – это одна из величайших загадок физики. Вероятно, есть очень веская причина, которая связана с некоей пока еще не открытой теорией субатомных частиц, но на момент написания этой книги никто не может сказать этого с уверенностью.


Квантовая вселенная. Как устроено то, что мы не можем увидеть

Рис. 6.8. Потенциальная яма Кулона вокруг протона. Яма глубже всего там, где находится сам протон


Что мы действительно знаем, так это то, что противоположные заряды притягиваются и протон перетягивает электрон к себе, поэтому, с точки зрения доквантовой физики, он может притянуть к себе электроны на сколь угодно малое расстояние. Насколько оно мало, зависит от конкретной природы протона: он твердый шарик или какое-то облако? Но этот вопрос не имеет физического смысла, потому что, как мы уже видели, существует минимальный энергетический уровень, на котором может находиться электрон и который определяется (грубо говоря) квантовой волной самой большой длины, которая способна поместиться в потенциал, созданный протоном. Этот созданный протоном потенциал мы изобразили на рис. 6.8. Глубокая «яма» функционирует так же, как уже известная нам прямоугольная потенциальная яма, только ее форма уже не столь проста. Она носит название потенциала Кулона, потому что подчиняется закону, описывающему взаимодействие двух электрических зарядов, который впервые вывел Шарль Огюстен де Кулон в 1783 году.

Проблема, однако, остается той же самой: мы должны выяснить, какие квантовые волны могут соответствовать этому потенциалу, что и определит разрешенные энергетические уровни атома водорода. Будучи бесхитростными, мы могли бы сказать, что это делается посредством «решения волнового уравнения Шрёдингера для потенциальной ямы Кулона», что служит способом применения правила перевода циферблатов. Детали этого процесса чисто технические, даже для таких простых объектов, как атом водорода. К счастью, мы не узнаем здесь почти ничего нового по сравнению с тем, что уже усвоили, так что перейдем прямо к ответу. Рис. 6.9 показывает некоторые получающиеся стоячие волны для электрона в атоме водорода. Это картина распределения вероятностей нахождения электрона в какой-либо точке. В более светлых областях такая вероятность выше. Конечно, реальный атом водорода трехмерный, и эти рисунки соответствуют разрезам в центре атома. Рисунок слева вверху – это волновая функция основного состояния, показывающая, что электрон в этом случае обычно находится на расстоянии примерно 1 × 10–10 м от протона. Энергия стоячих волн нарастает от левого верхнего к правому нижнему рисунку. Масштаб тоже изменяется в восемь раз от левого верхнего к правому нижнему рисунку, так что светлая область, покрывающая большую часть левого верхнего рисунка, имеет примерно тот же размер, что и маленькие яркие точки в центре двух правых рисунков. Это значит, что электрон, скорее всего, будет располагаться дальше от протона, когда он находится на более высоких энергетических уровнях (а следовательно, слабее с ним связан). Ясно, что эти волны совсем не синусоиды, то есть не соотносятся с состояниями определенного импульса. Но, как мы изо всех сил стараемся подчеркнуть, они соответствуют состояниям определенной энергии.


Квантовая вселенная. Как устроено то, что мы не можем увидеть

Рис. 6.9. Четыре квантовые волны с самой низкой энергией, описывающие электрон в атоме водорода. В светлых областях электрон может находиться с наибольшей вероятностью. Протон в центре. Рисунки вверху справа и внизу слева увеличены в 4 раза по сравнению с первым, а рисунок внизу справа – в 8 раз. Первый рисунок соответствует размеру примерно 3 × 10–10 м в диаметре


Отчетливая форма стоячих волн появляется благодаря форме ямы, однако некоторые детали следует обсудить более подробно. Самая очевидная особенность воронки вокруг протона заключается в ее сферической симметричности, то есть со всех сторон она выглядит одинаково. Чтобы представить это, возьмите баскетбольный мяч без каких-либо отметок на нем: это идеальная сфера, которая выглядит одинаково, как ее ни вращай. Возможно, мы можем думать об электроне внутри атома водорода как о запертом внутри микроскопического баскетбольного мяча? Это определенно более удачно, чем говорить о том, что электрон попался в квадратную яму, но, как ни удивительно, тут есть некое сходство. Рис. 6.10 показывает слева две стоячие волны с самой низкой энергией, которые могут возникнуть внутри баскетбольного мяча. Мы снова разрезали мяч, и давление воздуха внутри него повышается от черного к белому. Справа даны две возможные стоячие волны электрона в атоме водорода.


Квантовая вселенная. Как устроено то, что мы не можем увидеть

Рис. 6.10. Две простейшие стоячие звуковые волны внутри баскетбольного мяча (слева) в сравнении с соответствующими электронными волнами в атоме водорода (справа). Они очень похожи. Верхний рисунок атома водорода – это увеличенное изображение центральной части левой нижней картинки с рис. 6.9


Рисунки не идентичны, но очень похожи. И снова не будет столь уж глупо предположить, что электрон внутри атома водорода находится внутри чего-то, похожего на микроскопический баскетбольный мяч. Этот рисунок демонстрирует волновое поведение квантовых частиц, и мы надеемся, что он до некоторой степени срывает покровы таинственности с данного предмета: понимание поведения электрона в атоме водорода не более сложно, чем понимание того, как колеблется воздух внутри баскетбольного мяча.

Прежде чем оставить в покое атом водорода, мы хотели бы еще немного поговорить о потенциале, создаваемом протоном, и о том, как электрон перепрыгивает с более высокого энергетического уровня на более низкий, испуская при этом фотон.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.