Конец феминизма. Чем женщина отличается от человека - Александр Никонов Страница 9

Книгу Конец феминизма. Чем женщина отличается от человека - Александр Никонов читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Конец феминизма. Чем женщина отличается от человека - Александр Никонов читать онлайн бесплатно

Конец феминизма. Чем женщина отличается от человека - Александр Никонов - читать книгу онлайн бесплатно, автор Александр Никонов

Теперь производная функции. Милые эксперты, не пугайтесь – никакой теоремы Коши, никакого «пусть задано эпсилон больше нуля…» тут не будет. Когда я только начинал работать в университете, некоторое время ходил на занятия моих коллег – других преподавателей, чтобы понять что к чему. И таким образом я обнаружил, что на самом деле всё намного-намного проще, чем нас когда-то учили. Спешу поделиться своим открытием: производная функции – это штрих, который ставится справа вверху от обозначения функции. Ей-богу, я не шучу – прямо так вот и учат. Нет, разумеется, это далеко не всё: требуется заучить свод правил, что произойдёт, если штрих поставить у произведения функций и т.п.; выучить табличку, в которой изображено, что этот самый штрих производит со стандартными элементарными функциями, а также запомнить, что если результат этих магических операций оказался положительным, значит, функция растёт, а если отрицательным – убывает. Только и делов. С интегрированием точно такая же история: интеграл – это такая вот вертикальная карлючка, которая ставится перед функцией, затем даются правила обращения с этой самой карлючкой и отдельное сообщение: результат интегрирования – это площадь под кривой (и на кой им нужна эта площадь?..)

С преподаванием физики дела обстоят похоже, только рассказывать про это скучно – здесь не так много смешного. Потому очень кратко (просто для полноты картины): курс физики в первом семестре в Университете имени Пьера и Марии Кюри начинается почему-то с линейной оптики (при этом параллельно на лабораторных занятиях студенты зачем-то изучают осциллограф), затем два занятия подряд они зубрят наизусть огромную таблицу с размерностями физических величин (то есть как выражается в килограммах, секундах и метрах, скажем, гравитационная постоянная и т.п.; замечу попутно – при этом они понятия не имеют, что такое гравитационная постоянная), затем – механика (столкновения шариков, равновесие сил и т.п.), и, наконец, венчает осенний семестр почему-то гидродинамика. Почему именно такая выборка – понятия не имею, возможно, это то немногое, что знает главный координатор (и лектор) нашей секции. Почему именно в таком порядке? Да, собственно, какая разница, в каком порядке всё это зубрить…

Бедные Мария и Пьер Кюри… Они на том свете небось места себе не находят от стыда.

Попробую предложить отдалённую аналогию всей этой ахинеи для гуманитариев. Представьте себе, что программа университетского курса под названием «Русская литература» состоит из следующих разделов: 1. Творчество А.П. Чехова; 2. Лингвистический анализ произведений русских и советских писателей XIX и XX веков; 3. «Слово о полку Игореве»; 4. Творчество А. Платонова. И на этом всё…

Что же касается аспирантов Эколь Нормаль Суперьер (то есть тех, которые «супер-самые-самые»), то здесь ситуация совершенно иная. Эти ребята прошли такой суровый отбор, что ни вольных фантазеров, ни тем более разгильдяев здесь уже не встретишь. Более того, и с дробями у них всё в порядке, и алгебру они знают прекрасно, и ещё много-много всего, что им полагается знать к этому возрасту. Они очень целеустремлённые, работоспособные и исполнительные, и с диссертациями у них, я уверен, будет все в полном порядке. Одна беда – думать они не умеют совершенно. Исполнить указанные, чётко сформулированные преподавателем манипуляции – пожалуйста, что-нибудь выучить, запомнить – сколько угодно. А вот думать – никак. Эта функция организма у них, увы, атрофирована полностью. Ну, а кроме того, теоретическую физику они, конечно, не знают совершенно. То есть они, конечно, знают массу всевозможных вещей, но это какая-то пёстрая, совершенно хаотичная мозаика из массы всевозможных маленьких «знаний», которые они с успехом могут использовать, только если вопросы им приготовлены в соответствии с заранее оговорёнными правилами, совместимыми с этой мозаикой.

Например, если такому аспиранту задается некий вопрос, то ответом на него должно быть либо «знание А», либо «знание В», либо «знание С», потому что если это ни А, ни Б, ни С, он встанет в ступор, который называется «так не бывает». Хотя, конечно, и у аспирантов Эколь Нормаль Суперьер бывают довольно смешные дыры в знаниях – но тут несчастные детишки совершенно не виноваты – это преподаватели у них были такие. Например, из года в год я обнаруживаю, что никто из моих слушателей (аспирантов последнего года Эколь Нормаль Суперьер!) не способен взять Гауссов интеграл и вообще не имеет представления о том, что это такое. Ну, это как если бы человек писал диссертацию, скажем, о месте природы в поэзии позднего Пушкина и при этом не имел представления о том, что такое синонимы. Из этих аспирантов получатся прекрасные исполнители, как те «роботы-исполнители» из давнего фильма «Москва – Кассиопея»… И поэтому мне больше нравится преподавать первокурсникам университета: там все-таки еще есть хоть небольшая надежда кого-то чему-то научить…

Мне их так жалко, этих детишек! Вы только представьте: из года в год с раннего детства зубрить, зубрить и зубрить весь этот бред… Но ведь понятно, что вызубрить всё невозможно. Даже у самых прилежных учеников хоть в чем-то, но будут пробелы. На практике это иногда выглядит дико (по крайней мере, для меня). Представьте себе: прилежный студент, умеет находить производные, умеет интегрировать (то есть он вызубрил все правила про «штрих» и «вертикальную карлючку»), но вот дроби складывать не умеет. Или, допустим, складывать умеет, а вычитать – никак – ну не выучил вовремя! Он может знать всю таблицу умножения, но вот чему равно 6 умножить на 7 – нет (проболел в тот день, когда учитель в школе это сообщал). Теперь вы, надеюсь, поняли, что на самом деле 3/6 может равняться не только 1/3, а вообще чему угодно. Если хотите, это можно назвать «пятым правилом арифметики»: сколько скажут, столько и будет!

Мне неизвестно, сколько времени здесь продолжается весь этот образовательный «апокалипсис», может, лет десять, может, чуть меньше, но то, что в школы уже пришли преподаватели «нового поколения» – выпускники таких вот университетов – это точно, я вижу по своим ученикам. Что же касается моих коллег – нынешней университетской профессуры… Нет, с арифметикой у них всё в порядке, и вообще, в каком-то смысле все они довольно грамотные люди – стареющее вымирающее поколение. Но, с другой стороны, когда происходит такой всеобщий бардак в образовании, вольно или невольно, но тупеют все – не только ученики, но и преподаватели, видимо, это какой-то неизбежный закон природы. Разврат развращает…

В этом учебном году на семестровой контрольной одной из задач была такая (я думаю, наши восьми-, а может, и семиклассники её бы оценили):


«Воздушный шар летит в одном направлении со скоростью 20 км/час в течение 1 часа и 45 минут. Затем направление движения меняется на заданный угол (60°), и воздушный шар летит ещё 1 час и 45 минут с той же скоростью. Найти расстояние от точки старта до точки приземления».


Перед контрольной на протяжении двух недель среди преподавателей университета шла бурная дискуссия – не слишком ли сложна эта задача для наших студентов. В конце концов решили рискнуть выставить её на контрольную, но с условием, что те, кто её решит, получат дополнительно несколько премиальных очков. Затем в помощь преподавателям, которые будут проверять студенческие работы, автор этой задачи дал её решение. Решение занимало половину страницы и было неправильным. Когда я это заметил и поднял было визг, коллеги тут же успокоили меня очень простым аргументом: «Чего ты нервничаешь? Всё равно эту задачу никто не решит…». И они оказались правы. Из полутора сотен студентов, писавших контрольную, её решили только два человека (и это были китайцы). Из моих пятидесяти учеников примерно половина даже не попыталась её решать, а у тех, кто сделал такую попытку, спектр полученных ответов простирался от 104 метров до 108 500 километров. Отдавая работу той студентке, которая умудрилась получить расстояние в 108 500 километров, я попытался было воззвать к её здравому смыслу: дескать, ведь это два с половиной раза облететь вокруг земного шара! Но она мне с достоинством ответила: «Да, я уже знаю – это неправильное решение». Такие вот дела…

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.