Лейбниц. Анализ бесконечно малых - Jose Munoz Santonja Страница 29
Лейбниц. Анализ бесконечно малых - Jose Munoz Santonja читать онлайн бесплатно
Цвет | RGB |
Белый | #FFFFFF |
Зеленый | #00FF00 |
Желтый | #FFFF00 |
Цвет | RGB |
Коричневый | #800000 |
Пурпурный | #FF00FF |
Циановый | #00FFFF |
Цвет | RGB |
Серебряный | #C0C0C0 |
Темно-серый | #5Е5Е5Е |
Черный | #000000 |
Чтобы перейти от двоичного к десятичному, нам нужно учитывать разложение числа. В десятичной системе число 2357 равно
2357 = 2000 + 300 + 50 + 7 = 2 · 1000 + 3 · 100 + 510 + 7·1 = 2·103 + 3·102 + 5·101 + 7·100.
Аналогично, число 110 110 (2, разложенное в двоичной системе, равно
110 110(2= 1·25+1·24 + 0·23+1·22+1·21 + 0·20 = 32 +16 + 0 + 4 + 2 + 0 = 54.
Во время поездки в Вольфенбюттель в 1696 году Лейбниц представил свою систему герцогу Рудольфу Августу, и она произвела на него сильное впечатление. Лейбниц придумал монету, на лицевой стороне которой было изображение герцога, а на обратной — аллегория, посвященная двоичной системе. Если точнее, он выгравировал таблицу с числами от 0 до 15 и их соответствующими двоичными значениями, а также примеры сложения и умножения двоичных чисел.
Лейбниц видел в данной системе представление собственной философии и аналогию непрерывного создания чего-то из ничего. Он также связывал ее с сотворением мира. Сначала не было ничего — 0, а в первый день был только Бог. Через 7 дней уже было все, поскольку 7 в двоичной записи — это 111, в этом обозначении нет ни одного нуля.
Когда в 1700 году Лейбниц был избран иностранным членом восстановленной Парижской академии наук, он послал туда работу, в которой была изложена двоичная система. Однако, хотя академики и выразили интерес к открытию, они нашли, что его систему очень сложно использовать, и стали ждать, пока ученый представит примеры ее применения. Через несколько лет он снова представил свое исследование, которое было принято лучше, но в этот раз связал его с гексаграммами "И Цзин". Лейбниц также написал статью под заголовком "Изложение двоичной арифметики".
Сегодня двоичная система — основа информатики. Все компьютеры работают, используя эту систему счисления, и вся информация, которая проходит через них, превращается в набор нулей и единиц.
СТРАСТЬ К КИТАЮ
Лейбниц всегда испытывал особое влечение к китайской культуре. Уже в 1678 году он знал китайский язык, который лучше всего отвечал его представлениям об идеальном языке. Ученый считал, что европейская цивилизация наиболее совершенна, поскольку основана на христианском откровении, а китайская — наилучший пример нехристианской цивилизации. В 1689 году в Риме он познакомился с иезуитским миссионером Клаудио Филиппо Гримальди, президентом китайского управления математики в Пекине, и тот рассказал ему, что император, принцы и другие чиновники получают ежедневный урок математики, сам император знаком с учением Евклида и умеет вычислять движения небесных тел. В 1697 году Лейбниц опубликовал Novissima Sinica ("Последние новости из Китая"), сочинение, включавшее письма и работы иезуитских миссионеров в Китае. Через отца Вержюса, руководителя иезуитской миссии в Китае, которому он послал один экземпляр, эта работа попала в руки отца Иоахима Буве, миссионера, находившегося в Париже. С тех пор между Лейбницем и Буве установились очень тесные отношения, они даже вели совместную разработку двоичной системы. Познакомившись с философией Лейбница, Буве сравнил ее с древнекитайской философией, которая была основана на принципе естественного права. Также именно Буве привлек внимание Лейбница к гексаграммам "И Цзин", соответствовавшим двоичной системе, созданной Фу Си, мифическим персонажем — основателем китайской культуры.
Лейбниц во многих инстанциях выступал за то, чтобы добиться тесной связи между Европой и Китаем через Россию.
Так как у него были хорошие отношения с Москвой, он надеялся осуществить свое намерение. Ученый даже настаивал в Берлинской академии на подготовке протестантской миссии в Китае. По его мнению, если бы удалось обратить императора, это был бы большой успех, а католическая миссия не сильно продвинулась в этом деле.
Лейбниц опубликовал свою основную работу о Китае за несколько месяцев до смерти, назвав ее Discours sur la theologie naturelle des chinois ("Сочинение о естественной теологии китайцев"). В ней он утверждал, что древние китайцы создали естественную религию, совместимую с христианством. Он указал на аспекты древнекитайской философии, которые были схожи с его собственной. В последней части Лейбниц излагал свою двоичную систему и ее связь с "И Цзин". Он также указывал на важные моменты, которые делали китайцев цивилизованным народом, не уступающим европейцам: их древнейшие исторические хроники, в чем Европа явно отставала; их значительные достижения в практической философии (образовании, гражданских делах, личных отношениях) и в науках, которые превзошла только европейская наука.
"И ЦЗИН" И ДВОИЧНАЯ СИСТЕМА
"И Цзин", или "Книга перемен",— это древнекитайская книга для гадания, с помощью которой можно узнать будущее, связанное с семьей и другими аспектами жизни. В ней развивается даосистская философия инь и ян. Она была написана мифическим императором Фу Си около 2400 года до н. э. и дополнена в последующие эпохи, например Конфуцием в 500 году до н. э.
Толкование книги основывается на ряде символов (гексаграмм), каждый из которых имеет разное значение в зависимости от контекста. Они образованы непрерывными и пунктирными линиями, сгруппированными в триграммы. Каждая гексаграмма состоит из сочетания двух триграмм в разных вариантах. Восемь триграмм показаны на следующем рисунке.
Если соединить две триграммы всеми возможными способами, получаются 64 возможные гексаграммы, образованные шестью линиями. Хотя Буве думал, что это было создание самого Фу Си, именно китайский философ Шао Юн (1011-1077) придал гексаграммам вид, напоминающий двоичную систему На следующем рисунке мы можем увидеть некоторые из гексаграмм. Хотя китайцы не знали нуля, если рассматривать пунктирную линию как нуль, а непрерывную — как единицу, мы можем увидеть первые зашифрованные двоичные числа.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments