Верховный алгоритм. Как машинное обучение изменит наш мир - Педро Домингос Страница 10
Верховный алгоритм. Как машинное обучение изменит наш мир - Педро Домингос читать онлайн бесплатно
Кибервойна — это частный случай асимметричного конфликта, где одна из сторон не может сравниться с другой по мощи обычного вооружения, но тем не менее способна нанести противнику тяжелый урон. Небольшой отряд террористов, вооруженных канцелярскими ножами, смог обрушить башни-близнецы и убить тысячи невинных людей. Сегодня все наиболее серьезные угрозы безопасности США — асимметричные, и от них есть эффективное противоядие: информация. Если враг не сможет скрыться, он не выживет. Информации у нас предостаточно, и это хорошо, но есть и плохие новости.
Агентство национальной безопасности США печально известно своим неуемным аппетитом к данным: по некоторым оценкам, оно перехватывает более миллиарда телефонных звонков и других сообщений по всему земному шару. Не будем сейчас рассуждать об этических вопросах защиты частной жизни. Важно, что у агентства нет столько сотрудников, чтобы прослушать все эти звонки, прочитать электронные письма и даже отследить, кто с кем разговаривает. Большинство звонков вполне безобидны, поэтому написать программу, которая выловит из этого моря несколько подозрительных, очень сложно. Когда-то для этой цели использовались ключевые слова, но этот метод легко обвести вокруг пальца: достаточно назвать теракт свадьбой, а бомбу — свадебным тортом. В XXI веке за эту работу взялось машинное обучение. Конечно, работа агентства овеяна тайной, но в выступлении перед Конгрессом его директор признал, что анализ телефонных разговоров уже предотвратил десятки террористических угроз.
Если террористы смешаются с толпой футбольных фанатов, то обучающиеся алгоритмы смогут распознать их лица. Если террористы изобретут необычные взрывные устройства, алгоритмы обнаружат их. Алгоритмы могут решать и более тонкие задачи: связывать между собой события, которые по отдельности выглядят безобидными, но вместе складываются в зловещую схему. Такой подход мог бы предотвратить теракты 11 сентября 2001 года. Есть и еще один аспект. В ответ на действия обученной программы злоумышленники будут менять поведение, чтобы обвести ее вокруг пальца, и станут выделяться на фоне обычных людей, которые ведут себя по-прежнему. Чтобы этим воспользоваться, машинное обучение нужно объединить с теорией игр. В прошлом я работал над этой темой: надо не просто уметь побеждать сегодняшнего противника, но учиться парировать действия, которые он может предпринять против твоего алгоритма. К тому же учет плюсов и минусов различных действий, который возможен благодаря теории игр, может помочь найти правильный баланс между частной жизнью и безопасностью.
Во время битвы за Британию [17] Королевские ВВС выстояли, несмотря на значительный перевес люфтваффе. Немецкие летчики недоумевали: куда бы они ни летели, их всегда поджидали британские самолеты. У Великобритании было секретное оружие: радар, который замечал самолеты противника задолго до того, как тот входил в ее воздушное пространство. Машинное обучение — как радар, который сканирует будущее. Он позволяет не просто реагировать на ходы неприятеля, а предвосхищать их и рушить его планы.
Близкий каждому пример — так называемая полицейская профилактика. Благодаря прогнозированию тенденций в преступном мире, стратегическому распределению патрулей в наиболее опасных районах города и другим мерам правоохранительные органы эффективно выполняют задачи, которые без этих технологий потребовали бы больших сил. Работа полиции — будь то выявление мошенничества, раскрытие преступных сетей или старая добрая патрульная служба — во многом схожа с асимметричными боевыми действиями, и здесь находят применение многие из соответствующих методик обучения.
Машинное обучение играет все большую роль в военном деле. Обучающиеся алгоритмы могут развеять «туман войны»: анализ изображений, полученных при рекогносцировке, обработка рапортов после боя, составление картины положения для командира. Обучение усилит интеллект боевых роботов, поможет им ориентироваться, приспосабливаться к местности, отличать вражескую технику от гражданской, правильно целиться. Робот AlphaDog, разработанный Агентством по перспективным оборонным проектам, может нести солдату снаряжение. C помощью обучающихся алгоритмов дроны смогут летать автономно. Пока они отчасти контролируются людьми, но все идет к тому, что один пилот станет управлять все большим и большим роем летательных аппаратов. В армии будущего обучающихся алгоритмов будет значительно больше, чем солдат, а это спасет множество жизней.
Тенденции в мире технологий приходят и уходят, но в машинном обучении необычно то, что, несмотря на все трудности, оно продолжает развиваться. Первым крупным всплеском популярности стало прогнозирование взлетов и падений на рынках ценных бумаг, появившееся в конце 1980-х годов. Следующей волной стал анализ корпоративных баз данных, который начал довольно активно внедряться в середине 1990-х годов, а также такие области, как прямой маркетинг, управление работой с клиентами, оценка кредитоспособности и выявление мошенничества. Затем пришел черед интернета и электронной коммерции, где автоматизированная персонализация быстро стала нормой. Когда лопнувший пузырь доткомов нанес удар по этому бизнесу, приобрело популярность использование машинного обучения для поиска в интернете и размещения рекламы. События 11 сентября бросили машинное обучение на передовую войны с террором. Web 2.0 принес с собой целый спектр новых применений — от анализа социальных сетей до определения, что блогеры пишут о продукции данной компании. Параллельно ученые всех мастей все чаще обращались к масштабному моделированию. В первых рядах шли молекулярные биологи и астрономы. Едва наметился кризис на рынке недвижимости, как таланты стали перетекать с Уолл-стрит в Кремниевую долину. На 2011 год пришелся пик популярности мема [18] о больших данных, и машинное обучение оказалось прямо в центре глобального экономического кризиса. Сегодня, кажется, сложно найти область приложения человеческих усилий, не затронутую машинным обучением, включая неочевидные на первый взгляд сферы, например музыку, спорт и дегустацию вин.
Это замечательный прогресс, но он лишь предвкушение того, что нас ждет в будущем. Несмотря на пользу, которую приносит нам сегодняшнее поколение обучающихся алгоритмов, их возможности довольно скромны. Когда в нашу жизнь войдут алгоритмы, пока скрытые за стенами лабораторий, замечание Билла Гейтса о том, что прорыв в машинном обучении будет стоить десяти компаний Microsoft, покажется осторожной оценкой. Если идеи, от которых у исследователей горят глаза, принесут плоды, машинное обучение станет не только новой эрой цивилизации, но и новой стадией эволюции жизни на Земле.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments