Карманный справочник медицинских анализов - Леонид Витальевич Рудницкий Страница 16

Книгу Карманный справочник медицинских анализов - Леонид Витальевич Рудницкий читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Карманный справочник медицинских анализов - Леонид Витальевич Рудницкий читать онлайн бесплатно

Карманный справочник медицинских анализов - Леонид Витальевич Рудницкий - читать книгу онлайн бесплатно, автор Леонид Витальевич Рудницкий

Для образования факторов протромбинового комплекса необходим витамин К. При его дефиците, нарушении всасывания витамина в кишечнике при энтероколитах, дисбактериозе протромбиновый индекс также может снижаться.

Антагонистами витамина К являются противосвертывающие вещества непрямого действия (фенилин, синкумар, варфарин). Терапия этими препаратами должна контролироваться исследованием протромбинового времени или протромбинового индекса.

Большие дозы ацетилсалициловой кислоты, диуретики типа гипотиазида вызывают снижение протромбинового индекса, что должно учитываться при применении этих препаратов одновременно с фенилином, синкумаром.

Увеличение протромбинового индекса говорит о снижении свертывающих свойств крови и наблюдается в предтромботическом состоянии, в последние месяцы беременности, а также при приеме противозачаточных препаратов типа инфекундина, бисекурина.

Значение протромбинового времени зависит от применяемых для исследования тканевых тромбопластинов. Более стандартизированным тестом является международное нормализационное отношение (МНО).

Как правило при лечении противосвертывающими препаратами (антикоагулянтами) непрямого действия достаточно добиться увеличения МНО от двух до трех, что соответствует увеличению протромбинового времени в 1,31,5 раза по сравнению с исходным значением (или соответственно снижению протромбинового индекса).

Концентрация фибриногена. Фибриноген (плазменный фактор I) синтезируется главным образом клетками печени. В крови он находится в растворенном состоянии и под влиянием тромбина превращается в нерастворимый фибрин. Нормальная концентрация фибриногена в крови, определяемая методом Рутберга, составляет 2–4 г/л (200–400 мг%).

Повышение концентрации фибриногена говорит о гиперкоагуляции (то есть повышенной свертываемости крови) и наблюдается при инфаркте миокарда, предтромботических состояниях, при ожогах, в последние месяцы беременности, после родов, хирургических вмешательств.

Отмечено увеличение концентрации фибриногена при воспалительных процессах (в частности, при воспалении легких), злокачественных новообразованиях (рак легкого).

Тяжелые болезни печени с выраженными нарушениями ее функции сопровождаются гипофибриногенемией – снижением концентрации фибриногена в крови.

3.5.3. Исследование фибринолитического звена гемостаза

Фибринолитическая активность. После того как сгусток фибрина (тромб) образовался, уплотнился и сократился, начинается сложный ферментативный процесс, ведущий к его растворению.

Этот процесс (фибринолиз) происходит под воздействием плазмина, который находится в крови в виде неактивной формы – плазминогена. Переход плазминогена в плазмин стимулируют активаторы плазменного, тканевого и бактериального происхождения. Тканевые активаторы образуются в ткани предстательной железы, легких, матки, плаценты, печени.

Об активности фибринолиза судят по степени быстроты растворения сгустка фибрина. Естественный лизис, определенный с помощью метода Котовщиковой, равен 12–16 % сгустка; определенный более сложным методом лизиса эуглобулинового сгустка – 3–5 ч.

Если растворение сгустка ускорено, это свидетельствует о склонности к кровоточивости, если удлинено, говорят о предтромботическом состоянии.

Значительное повышение фибринолитической активности отмечается при поражении органов, богатых активаторами плазминогена (легкие, предстательная железа, матка), и при хирургических вмешательствах на этих органах.

Снижение фибринолитической активности наблюдается при инфаркте миокарда, злокачественных опухолях, и в частности раке желудка.

4. Биохимическое исследование крови
4.1. Белок плазмы крови и его фракции

Кровь состоит из жидкой части и форменных элементов – клеток крови. Если выпустить кровь из сосуда в сухую пробирку, то через несколько минут в ней образуется сгусток темно-красного цвета, состоящий из нитей фибрина. Светло-желтая жидкость над сгустком – сыворотка. Если кровь смешать с консервирующим раствором и дать отстояться или подвергнуть центрифугированию, то она разделится на два основных слоя: нижний – красного цвета – осадок из форменных элементов (эритроцитов, лейкоцитов, тромбоцитов) и верхний – прозрачная желтоватая жидкость – плазма. Сыворотка отличается от плазмы отсутствием в ней белка фибриногена, перешедшего в сгусток крови.

Кровь на 55 % состоит из плазмы и на 45 % – из форменных элементов, которые находятся в ней во взвешенном состоянии.

Плазма – это сложная биологическая среда, которая содержит 92 % воды, 7 % белка и 1 % жиров, углеводов и минеральных солей.

Белки плазмы (сыворотки) крови представляют собой высокомолекулярные азотсодержащие соединения. Они имеют сложное строение, в их состав входит более 20 аминокислот. Последние получили свое название благодаря наличию аминных групп (NH2) и карбоксильных (кислотных) групп (COOH). Аминокислоты обладают свойствами как кислот, так и оснований и могут вступать во взаимодействие с различными соединениями.

Аминокислоты, соединяясь друг с другом, образуют крупные молекулы различных белков. Организм содержит более 100 тысяч видов различных белковых молекул. По форме они могут быть разделены на фибриллярные и глобулярные. Фибриллярные белки имеют удлиненную, нитевидную форму; длина молекул в десятки и сотни раз превышает их диаметр. Молекулы глобулярных белков имеют форму шара (комочка), длина их превышает диаметр не более чем в 3-10 раз. Имеются и переходные формы.

В состав белков входят: углерод (50,654,6 %), кислород (21,5-23,5 %), водород (6,57,3 %), азот (15–16 %).

Кроме того, в состав белков входят также в небольших количествах сера, фосфор, медь, железо и некоторые другие элементы.

Химические свойства белков во многом подобны аминокислотам. Молекула белка, так же как и молекула аминокислоты, содержит по меньшей мере, одну свободную аминогруппу и одну карбоксильную группу. Поскольку в молекулу белка входит огромное количество аминокислот, таких «свободных групп» очень много. Благодаря наличию свойств кислот и оснований белки могут вступать в самые разнообразные химические реакции с самыми различными веществами, выполняя свои многочисленные функции в организме.

Белки условно делят на простые и сложные. Простыми называют белки, которые состоят только из аминокислот. К ним относят протамин, гистоны, альбумины, глобулины и ряд других.

При распаде сложных белков наряду с аминокислотами образуются другие соединения: нуклеиновые кислоты, фосфорная кислота, углеводы и т. д. К группе сложных белков относят нуклеопротеиды, хромопротеиды, фосфопротеиды, глюкопротеиды, липопротеиды и ряд белков – ферментов, содержащих разные простетические (небелковые) группы.

Белки могут отдавать или получать электрический заряд, становясь при этом заряженными положительно или отрицательно. Если это происходит одновременно, молекула белка становится электронейтральной.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.