Удивительная генетика - Вадим Левитин Страница 8

Книгу Удивительная генетика - Вадим Левитин читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Удивительная генетика - Вадим Левитин читать онлайн бесплатно

Удивительная генетика - Вадим Левитин - читать книгу онлайн бесплатно, автор Вадим Левитин

Удивительная генетика

Молекула ДНК


Другое отличие РНК от своей двоюродной сестры заключается в том, что центральным звеном сахаро-фосфатного остова у нее является сахар рибоза (отсюда и название – рибонуклеиновая), тогда как в молекуле ДНК рибоза теряет один атом кислорода и превращается в дезоксирибозу.

Наконец, молекула РНК у всех клеточных организмов состоит из одной-единственной нити и выполняет в клетке вспомогательные функции, а основным носителем генетической информации является ДНК. И только у некоторых вирусов она вполне самостоятельна и существует в виде двух цепочек.

Уникальные последовательности нуклеотидов, объединенные в тройки – триплеты и насчитывающие десятки, сотни, а то и многие тысячи звеньев, представляют собой кодирующие участки молекулы ДНК – гены. Таким образом, морфологически и структурно ген – это фрагмент молекулы ДНК. Когда клетка собирается разделиться, она предварительно удваивает свой генетический материал. При этом молекула ДНК расплетается, и на каждой из нитей, как на матрице, происходит сборка дочерней нити, в точности повторяющей последовательность нуклеотидов родительской, ибо тимин всегда соединяется только с аденином, а цитозин – с гуанином. В результате появляются две идентичные дочерние ДНК, которые при делении (митозе) расходятся по разным клеткам.

Кроме передачи признаков потомкам, ДНК занимается синтезом белка. В молекуле ДНК хранится наследственная информация о структуре всех без исключения белков, необходимых для нормальной жизни клетки. В клетках высших организмов – эукариот – ДНК располагается в ядре, а система рибосом, внутриклеточных органелл, на которых ведется сборка белка, находится в цитоплазме.

Каким же образом информация с ДНК попадает на рибосомы?

Сборка белка – многоступенчатый и трудоемкий процесс, и для успешного его осуществления ДНК нужен посредник, в роли которого выступает другое нуклеопротеидное соединение – уже знакомая нам рибонуклеиновая кислота (РНК), которая в клетках высших организмов всегда играет сугубо подсобную роль. В силу своей «однонитчатости» (двухцепочечная РНК, как мы помним, встречается только у некоторых вирусов), она не закручивается в спираль, а образует причудливые структуры в виде шпилек, петель, крестов, клубков и других геометрических фигур.

Есть три типа РНК – информационная (ее еще называют матричной), рибосомальная и транспортная.

Удивительная генетика

Синтез белка


Первым делом с молекулы ДНК снимается копия – матричная (информационная) РНК, причем каждому азотистому основанию ДНК соответствует комплементарное (буквально – дополнительное, а по сути – идентичное) азотистое основание РНК. Однако в отличие от репликации ДНК при делении клетки, когда копированию подвергается вся молекула целиком, при белковом синтезе копируются только лишь строго определенные участки материнской молекулы. Такое выборочное копирование приводит к тому, что матричная РНК-посредник всегда получается ощутимо короче своей родительницы. Затем она отходит от ядра в цитоплазму и приближается к рибосомам – своеобразным станкам по производству белка.

Информационная РНК обычно формирует так называемый полисомный комплекс – своего рода матрицу, на которой, как в типографии с набранного шрифта, начинается печать свежих белковых молекул. А работу по доставке готовых строительных блоков (то есть аминокислот, из которых построены белки) выполняют транспортные РНК.

Итак, сначала инструкция по синтезу белка переписывается на матричную РНК, а затем воплощается в материале на полирибосомном комплексе. Транспортные РНК, представляющие собой сравнительно небольшие молекулы, подтаскивают к растущей белковой цепочке все новые и новые аминокислоты (любой белок строится из аминокислот) и нанизывают их в точном соответствии с уникальной последовательностью нуклеотидов (азотистых оснований) матричной РНК.

Различная последовательность нуклеотидов приводит к синтезу разных белков. Одна молекула белка собирается на рибосоме за 20–30 секунд, и чем больше рибосом включается в состав полисомы, тем больше молекул сходит с конвейера в единицу времени.

Когда потребность в белковых молекулах определенного типа полностью удовлетворена, в дело вступает особый ген-регулятор. Он дает команду, и фрагмент ДНК, отвечающий за синтез этого белка, прекращает свою деятельность до тех пор, пока клетка снова не ощутит в нем потребность. Этот классический механизм обратной связи отшлифован в длинном ряду поколений до немыслимого совершенства.

Остается добавить, что у всех современных организмов – от вирусов до высших млекопитающих – система «ДНК – РНК – белок» функционирует с помощью большого количества ферментов-катализаторов, без которых многоступенчатый процесс белкового синтеза немедленно скисает. Ни одна нуклеиновая кислота не умеет копировать себя самостоятельно.


А теперь поговорим о генах. Учебники генетики 20–30-летней давности утверждали, что у человека должно быть около миллиона генов. Цифра явно взята с потолка, потому что к тому времени были расшифрованы генотипы только самых примитивных одноклеточных живых существ. Поскольку у бактерий количество генов колеблется от нескольких сотен до двух-трех тысяч, молекулярные биологи рассудили, что у человека их будет по крайней мере на два порядка больше.

По прошествии нескольких лет специалисты пересмотрели свои позиции и остановились на том, что в геноме человека примерно 140 тысяч значащих генетических последовательностей – то есть генов, кодирующих какие-либо белки.

Но и эта цифра оказалась чересчур оптимистичной. Когда в начале XXI века человеческий геном был полностью расшифрован и описан, выяснилось, что генов у нас с вами всего-навсего 20–25 тысяч, то есть практически столько же, сколько у белых мышей. Тогда же пришлось отказаться от классической догмы молекулярной биологии: «один ген – один фермент». Ведь оказалось, что бо ´

льшая часть ДНК простаивает без дела и неизвестно чем занимается. Но в этом случае возникает закономерный вопрос: почему экономная природа не избавилась от ненужного хлама и продолжает его бережно хранить? Значит, он для чего-то все-таки нужен?..

О том, что гены бывают структурные и функциональные, ученые знали еще давно. Со структурными генами все более или менее ясно – они определяют последовательность аминокислот в полипептидной цепочке, то есть занимаются своим прямым делом – синтезом белков и ферментов. Функциональные гены не вмешиваются в рутинную процедуру белкового синтеза, но они контролируют деятельность других генов, оперативно включая и выключая те или иные внутриклеточные процессы. (Вспомним, например, ген-оператор, который в нужный момент приостанавливает синтез белкового продукта.)

И функциональные, и структурные гены относятся к кодирующей части молекулы ДНК, но исследования последних лет показали, что от 98 до 99 % генома (то есть почти вся молекула ДНК) приходится на так называемый джанк (от англ. junk – «хлам, отбросы»), то есть на бесполезный балласт – внегенные участки ДНК, никак не связанные ни с продукцией белков или ферментов, ни с регуляторной деятельностью функциональных наследственных структур.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.