Тьюринг. Компьютерное исчисление - Рафаэль Лаос-Бельтра Страница 7

Книгу Тьюринг. Компьютерное исчисление - Рафаэль Лаос-Бельтра читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Тьюринг. Компьютерное исчисление - Рафаэль Лаос-Бельтра читать онлайн бесплатно

Тьюринг. Компьютерное исчисление - Рафаэль Лаос-Бельтра - читать книгу онлайн бесплатно, автор Рафаэль Лаос-Бельтра

— Шаг 4. Подставить полученную величину в одно из двух уравнений, где выделена одна неизвестная.

— Шаг 5. Решить получившееся в предыдущем пункте уравнение.

— Шаг 6. Конец программы.

Эти заключения приводят нас к выводу о том, что компьютер представляет собой машину Тьюринга, работающую с алгоритмами. Когда решение задачи может быть выражено в виде алгоритма, считается, что задача разрешима. Швейцарский инженер Никлаус Вирт (р. 1934), автор языков программирования «Алгол», «Модула-2» и «Паскаль», участвовал в разработке определения программы в 1975 году. Согласно его определению, программа — соединение алгоритма с формой организации данных внутри программы; организация данных также получила название структура данных. Отсюда происходит знаменитое выражение Вирта: алгоритм + структура данных = программа.


АЛОНЗО ЧЁРЧ, ЛЯМБДА-ИСЧИСЛЕНИЕ И «ЛИСП»

Несмотря на то что с Тьюрингом всегда ассоциировалась машина, носящая его имя, после того как с трудами этого исследователя познакомился другой замечательный математик, Алонзо Чёрч (1903-1995), последний опубликовал работу, которая отнимала у машины Тьюринга часть оригинальности.

В 1930-е годы Чёрч вместе со Стивеном Клейни (1909-1994) ввели Х-исчисление — абстрактную математическую систему для формализации и анализа вычислимости функций.

Функция — математическое выражение у = f(x), отражающее связь между двумя переменными, например длиной х и весом у синих китов, в виде выражения у = 3,15х - 192. Это понятие, предложенное в XVII веке Декартом, Ньютоном и Лейбницем, в 1930-е годы было пересмотрено с целью разработки общей теории математических функций.

Тьюринг. Компьютерное исчисление

Новый синтаксис

Одной из заслуг Чёрча считается введение нового синтаксиса для представления данного класса математических выражений. Так, если, например, мы вычислим значение выражения (+(*23)(*56)), при этом звездочка — оператор умножения, то получим 36, поскольку (2 · 3) + (5 · 6) = 6 + + 30 = 36. Математическая функция должна быть абстрактной. Также для λ-исчисления используется более сложное выражение (λx. + x1), означающее: «Функция (представленная символом λ) от переменной (здесь х), которая имеет вид λ(x) (представлена здесь как.), добавляет (оператор +) величину переменной (то есть х) к 1». Мы можем несколько усложнить предыдущее выражение, записав ((λ х. + х1)3), результат которого равен 4, поскольку мы указали, что х = 3. Предсказуемо, что для преобразования всех элементов λ-исчисления мы можем усложнять операции. Другой заслугой такого типа исчисления стало его влияние на теорию, изучающую компьютерное программирование.


Проблема остановки

Однако если λ-исчисление и получило известность, то только благодаря тому, что Чёрч использовал эту абстракцию для изучения проблемы остановки, придя в результате к понятию разрешимой задачи, то есть идеи, лежащей в основе машины Тьюринга. В свою очередь, Тьюринг в 1937 году доказал, что λ-исчисление и его машина эквивалентны, то есть представляют собой два пути, по которым можно прийти к одному результату. Когда машина Тьюринга обрабатывает одно из указанных выражений, например (+31), она останавливается после того, как получен результат, в данном случае 4, то есть эта задача является разрешимой. С практической точки зрения λ-исчисление вдохновило развитие так называемых функциональных языков программирования, одним из примеров которых является «Лисп» — важнейший язык искусственного интеллекта. Появился он в 1958 году благодаря Джону Маккарти (1927-2011), автору термина «искусственный интеллект». Среди характеристик, которые язык унаследовал от λ-исчисления, — использование скобок:

(defstruct persona

(имя Alan)

(возраст 41))

или более просто:

(format t «Привет, Тьюринг!»)


ДРУГИЕ МАШИНЫ ТЬЮРИНГА

В 1982 году нобелевский лауреат в области физики Ричард Фейнман (1918-1988) выдвинул захватывающую задачу, к которой мы обратимся в последней главе. После обнаружения ограничений в вычислительных способностях машин Тьюринга, помимо известной проблемы остановки (поговорим о ней в следующем параграфе), Фейнман предсказал существование вопросов, которые никогда не смогут быть обработаны компьютером. Он предположил, что и машины Тьюринга, и компьютеры не могут применяться для моделирования явлений квантовой природы, наблюдаемых на уровне атомов и не соответствующих классической физике. Ученый хотел сказать, что квантовые явления относятся к неразрешимым задачам, следовательно, они не могут быть обработаны обычным компьютером: машина Тьюринга, помимо прочих особенностей, должна для этого находиться одновременно в разных состояниях или одновременно считывать данные из разных ячеек. Компьютер для обработки квантовых явлений должен быть способным воспринимать не только состояния 0 и 1, но и возможные средние значения между 0 и 1 и одновременно использовать разные регистры оперативной памяти. После этого, в 1985 году, другой английский физик израильского происхождения, Дэвид Дойч (р. 1953), разработал новый класс машины Тьюринга, в котором эти ограничения были преодолены, — квантовую машину Тьюринга. Квантовые компьютеры способны моделировать неразрешимые задачи, такие как квантовые феномены, и, естественно, их ждет широкое применение.

Кроме оригинальной машины, предложенной Тьюрингом, и ее квантового варианта, предлагались и другие разработки. Например, можно построить полицефальную машину Тьюринга, то есть машину с двумя и более головками, которые считывают и записывают информацию на одну ленту, что увеличивает эффективность вычислений.

Тьюринг. Компьютерное исчисление

Курт Гёдель (1906-1978), создатель теоремы о неполноте, пошатнувшей основы математики.

Тьюринг. Компьютерное исчисление

Деталь машины Тьюринга, построенной из деталей конструктора LEGO.

Тьюринг. Компьютерное исчисление

Алан Тьюринг участвует в забеге на длинную дистанцию в Доркинге (Англия) в 1946 году. В этом забеге он занял второе место.


Также возможна машина Тьюринга, считывающая информацию из ячеек на нескольких лентах. Предлагались и другие альтернативы, например индетерминистская машина Тьюринга, в которой таблица переходов предусматривает для определенного состояния несколько правил перехода, и их выбор происходит случайно. Однако настоящим вызовом стал класс машин, которые Тьюринг назвал оракулом, или о-машиной. В этой разработке ученый попытался преодолеть ограничения традиционной машины, обеспечив ее достаточной вычислительной мощностью для решения проблемы остановки или задач, решение которых невозможно было выразить с помощью алгоритма. О-машина — это машина Тьюринга, подключенная к черному ящику, называемому оракулом и позволяющему преодолевать ограничения машины. Оракул можно представить как вторую ленту. В этой машине вводится специальный знак — маркер. Между маркерами помещается символ, по которому машине требуется консультация оракула. Дойдя до него, машина Тьюринга переходит в специальное состояние, названное состоянием вызова, и направляет оракулу запрос. Если оракул признает символ принадлежащим к его системе символов, машина переходит в состояние 1, в противном случае — в состояние 0. Оракул стал первой попыткой исследований Тьюринга в области, которая впоследствии получит название гипервычислений, или сверхтъюринговых вычислений y, то есть вычислений, находящихся за пределами возможностей компьютера, предложенного самим английским ученым.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.