Код креативности. Как искусственный интеллект учится писать, рисовать и думать - Маркус Дю Сотой Страница 6

Книгу Код креативности. Как искусственный интеллект учится писать, рисовать и думать - Маркус Дю Сотой читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Код креативности. Как искусственный интеллект учится писать, рисовать и думать - Маркус Дю Сотой читать онлайн бесплатно

Код креативности. Как искусственный интеллект учится писать, рисовать и думать - Маркус Дю Сотой - читать книгу онлайн бесплатно, автор Маркус Дю Сотой

Можно ли воплотить эти стратегии в программном коде? В использовавшемся в прошлом нисходящем подходе к программированию было очень мало надежды на проявление творческого начала в результатах работы программы. То, что выдавали созданные программистами алгоритмы, никогда не бывало слишком удивительным для их авторов. Не оставалось возможностей ни для экспериментов, ни для неудач. Но недавно все это изменилось: алгоритм, построенный на коде, который учится на собственных ошибках, сделал нечто новое, ошарашившее его создателей и оказавшееся невероятно ценным. Этот алгоритм победил в игре, которую, по мнению многих, машина в принципе не могла освоить. Игра эта требует творческого подхода.

Именно известие об этом революционном событии и стало причиной моего недавнего экзистенциального кризиса как математика.

3
На старт, внимание… го!

Мы все конструируем и конструируем,

но интуиция все равно полезна.

Пауль Клее

Математику часто сравнивают с игрой в шахматы. Между этими двумя занятиями, несомненно, есть связи, но, когда компьютер Deep Blue обыграл лучшего гроссмейстера, какого человечество смогло выставить против него в 1997 году, это не привело к закрытию математических факультетов. Хотя шахматы – хорошая аналогия формального аспекта построения доказательства, есть еще одна игра, по мнению математиков, гораздо более близкая к творческой и интуитивной стороне занятий математикой. Речь идет о китайской игре го [16].

Я впервые познакомился с го, когда был старшекурсником и приехал на математический факультет Кембриджского университета, чтобы выяснить, смогу ли поступить в аспирантуру в поразительную группу, которая участвовала в завершении классификации конечных простых групп, своего рода «периодической таблицы симметрий». Пока я беседовал о будущем математики с Джоном Конвеем и Саймоном Нортоном, входившими в число архитекторов этого великого проекта, меня все время отвлекали сидевшие за соседним столом студенты, которые яростно припечатывали к большой сетке размером 19 ×19 линий, вырезанной на деревянной доске, черные и белые камни.

В конце концов я спросил Конвея, чем это они занимаются. «Это го – самая древняя игра из тех, в которые играют до сих пор». В отличие от шахмат с их воинственным характером, объяснил он, го – игра территориальная. Игроки поочередно ставят на сетку размером 19 ×19 линий белые и черные шашки – «камни». Если вам удается окружить своими камнями группировку камней противника, его камни становятся вашими. Побеждает игрок, которому к концу партии удалось захватить большее число камней. Казалось, все довольно просто. Тонкость этой игры, объяснил Конвей, заключается в том, что, пытаясь окружить противника, нужно в то же время не дать ему окружить ваши собственные камни.

«Эта игра чем-то похожа на математику: простые правила порождают сложность и красоту». Именно наблюдая за развитием игры между двумя мастерами этого дела, пившими кофе в столовой, Конвей обнаружил в последней части игры – ее эндшпиле – поведение, свойственное новому типу чисел, которые он назвал «сюрреальными».

Я всегда интересовался играми. В любых дальних странствиях я люблю учиться играм, в которые играют местные жители, и привозить их с собой. Поэтому, когда я вернулся из диких кембриджских краев к себе домой в Оксфорд, я решил купить в местном магазине игрушек набор для игры в го и выяснить, чем эта игра так увлекала тамошних студентов. Начав исследовать ее вместе с одним из моих однокашников по Оксфорду, я понял, насколько тонка эта игра. Было очень трудно найти ясную стратегию, которая позволила бы мне выиграть. По мере того как на доску выкладывались все новые камни, казалось, что игра становится все сложнее – в отличие от шахмат, в которых постепенное удаление фигур с доски приводит к упрощению партии.

По оценке Американской ассоциации го, количество возможных партий, не противоречащих правилам игры в го, исчисляется 300-значным числом. Что касается шахмат, информатик Клод Шеннон рассчитал, что для исчисления возможных партий в них должно хватить 120-значного числа (которое называют теперь числом Шеннона). В обоих случаях речь идет о немалых числах, но они дают представление о диапазоне возможных вариантов.

В детстве я много играл в шахматы. Мне нравилось продумывать логические следствия предложенных ходов. Это занятие было по душе росшему во мне математику. Дерево возможных ходов в шахматах ветвится упорядоченным образом, что позволяет компьютеру и даже человеку анализировать вероятные последствия каждого хода, последовательно продвигаясь по разным ветвям. В случае же го, напротив, кажется, что игра не позволяет логически предсказывать последствия будущего хода. Перемещение по дереву возможностей быстро становится невозможным. Это не значит, что игрок в го не обдумывает логические последствия каждого своего хода, но эти рассуждения, по-видимому, сочетаются с более интуитивным ощущением характера партии.

Человеческий мозг активно стремится выискивать в визуальных изображениях структуры и закономерности, если только они там есть. Игрок в го может, глядя на расположение камней и пользуясь способностью мозга находить такие структуры, выбрать свой следующий ход, исходя именно из них. Компьютерам всегда было трудно работать с визуальной информацией. Это одна из тех крупных проблем, над которыми инженеры бьются десятилетиями. Высокоразвитая способность человеческого мозга воспринимать визуальные структуры оттачивалась на протяжении миллионов лет, так как она была совершенно необходима для нашего выживания. Выживание любого животного отчасти зависит от его способности различать в визуальном беспорядке, которым окружает нас природа, закономерности и образы. Упорядоченная структура в хаосе джунглей, вероятно, указывает нам на присутствие другого животного – и ее важно заметить, потому что это животное может нас съесть (а может быть, мы его). Человеческий код чрезвычайно хорошо умеет считывать образы, интерпретировать их возможное развитие и вырабатывать соответствующую реакцию. Эта способность – одно из самых ценных наших преимуществ, и именно она помогает нам понимать и оценивать по достоинству образы в музыке и изобразительном искусстве.

Оказывается, именно распознаванием образов я занимаюсь в своей математической работе, когда отправляюсь в неисследованные уголки математических джунглей. Я не могу просто полагаться на пошаговый логический анализ местной среды. С ним я далеко не уйду. Он должен сочетаться с интуитивным ощущением того, что может находиться где-то рядом. Эта интуиция развивается за время, посвященное исследованию уже известного пространства. Но часто бывает трудно логически аргументировать, почему мне кажется, что в таком-то направлении лежит территория, интересная для исследования. Математическая гипотеза – это, по определению, утверждение еще не доказанное, но у математика, высказывающего гипотезу, уже есть ощущение, что его математическое утверждение может быть хотя бы до некоторой степени истинным. Пробираясь сквозь заросли и пытаясь прокладывать новые пути, мы используем как наблюдения, так и интуицию.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.