Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос Страница 56

Книгу Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос читать онлайн бесплатно

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос - читать книгу онлайн бесплатно, автор Алекс Беллос

Со временем счетоводы привыкли к использованию отрицательных чисел в своей профессии, математики же очень долго остерегались их. В XV и XVI веках отрицательные величины были известны как абсурдные числа (numeri absurdi) [123], и даже в XVII столетии многие считали их бессмысленными. В XVIII веке преобладал следующий аргумент против отрицательных чисел. Рассмотрим такое уравнение:

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

С арифметической точки зрения это правильное утверждение. Тем не менее оно парадоксально, поскольку гласит, что отношение меньшего числа (−1) к большему (1) эквивалентно отношению большего числа (1) к меньшему (−1). Этот парадокс стал предметом множества дискуссий, но никто так и не смог его объяснить. В попытках понять смысл отрицательных чисел многие математики, в том числе и Леонард Эйлер, пришли к невероятному выводу, что эти числа больше бесконечности [124]. Данная концепция вытекает из анализа такой последовательности:

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Что эквивалентно ряду:

3,3; 5; 10; 20…

По мере уменьшения числа в нижней части дроби (знаменателя) от 3 до 2, а затем до 1 и 1/2, абсолютное значение дроби становится больше, а когда значения знаменателя приближается к нулю, значение дроби стремится к бесконечности. Была выдвинута гипотеза, что, когда знаменатель равен нулю, значение дроби бесконечно, а когда он меньше нуля (другими словами, когда это отрицательное число), дробь должна быть больше бесконечности. В настоящее время мы избегаем этой парадоксальной ситуации, утверждая, что бессмысленно делить число на ноль. Дробь 10/0 не бесконечна; она «не определена».

В этом смешении разных мнений прозвучала одна четкая и понятная концепция, принадлежавшая английскому математику Джону Уоллису, который придумал эффективный способ визуальной интерпретации отрицательных чисел. В написанном в 1685 году труде A Treatise of Algebra («Трактат по алгебре») Уоллис впервые представил числовую ось (см. рисунок ниже), на которой положительные и отрицательные числа отображают расстояния от ноля в противоположных направлениях. Уоллис писал, что если человек отойдет от ноля вперед на пять ярдов, а затем вернется назад на восемь ярдов, то он «переместится на позицию, которая на 3 ярда дальше, чем ничто… А значит, −3 — это та же точка на линии, что и +3, но не вперед, как должно быть, а назад». Заменив концепцию количества концепцией позиции, Уоллис показал, что отрицательные числа нельзя считать «ни бесполезными, ни абсурдными». Как оказалось, это было явное преуменьшение. Понадобилось несколько лет на то, чтобы идея Уоллиса получила широкое распространение, но теперь, по прошествии времени, очевидно, что цифровая ось — самая успешная разъяснительная схема всех времен. У нее множество разных областей применения, от графиков до термометров. Теперь, когда мы можем увидеть отрицательные числа на числовой оси, у нас больше нет концептуальных трудностей с тем, чтобы представить себе, что это такое.

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Числовая ось

Немецкий философ Иммануил Кант тоже вступил в полемику по поводу отрицательных чисел, заявив в своем труде Attempt to Introduce the Concept of Negative Quantities into World-Wisdom («Опыт введения в философию понятия отрицательных величин»), что бессмысленно использовать против них метафизические аргументы [125]. Он доказал, что в реальном мире многое может иметь как положительное, так и отрицательное значение, подобно двум противонаправленным силам, воздействующим на объект. Отрицательное число представляет собой не отрицание числа, а скорее, сопоставимое противоположное.

Тем не менее даже в конце XVIII столетия еще оставались математики, глубоко убежденные в том, что отрицательные числа — это «специальный термин, лишенный здравого смысла; но, будучи однажды введенным в оборот, подобно многим другим выдумкам, находит своих самых рьяных сторонников среди тех, кто любит принимать все на веру и не терпит тяжелый труд серьезных размышлений» [126]. Уильям Френд, второй среди лучших студентов, изучавших математику в Кембридже, написал эти слова в 1796 году в книге, которая стала уникальной в математической литературе: это было введение в алгебру, не содержащее ни единого отрицательного числа.

Когда мы изучаем отрицательные числа в школе, нам не рассказывают всю эту предысторию. Мы принимаем отрицательные числа по аналогии с числовой осью, а затем узнаем поразительную новость:

Минус, умноженный на минус, дает плюс.

Вот это да! Числовая ось прекрасно справляется с визуальной репрезентацией отрицательных чисел, но она не дает представления о том, что происходит, когда мы умножаем их друг на друга. Математика становится еще сложнее.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.