Ритм вселенной. Как из хаоса возникает порядок - Стивен Строгац Страница 55

Книгу Ритм вселенной. Как из хаоса возникает порядок - Стивен Строгац читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Ритм вселенной. Как из хаоса возникает порядок - Стивен Строгац читать онлайн бесплатно

Ритм вселенной. Как из хаоса возникает порядок - Стивен Строгац - читать книгу онлайн бесплатно, автор Стивен Строгац

Возможность такого потока «в сторону» обеспечивалась совершенно неизвестным нам веществом, нисколько не похожим на воду, – квантовой жидкостью, идеально синхронизированной совокупностью пар Купера. Привычные нам жидкости представляют собой хаотические совокупности молекул, не сотрудничающих между собой. Даже спокойная вода в медленно текущем ручейке представляет собой – на микроскопическом уровне – беспорядочную толчею молекул. Эти молекулы постоянно сталкиваются друг с другом, скользят друг мимо друга, спотыкаются и беспрестанно покачиваются. Но движение пар Купера в сверхпроводнике настолько хорошо организованно, что нам трудно это представить. Все спаренные электроны когерентны по фазе: вершины и впадины их квантовых волн идеально налагаются одна на другую. Если, как предполагал Джозефсон, слой оксида оказывается достаточно тонким, эти волны способны просачиваться через такой барьер и проникать в сверхпроводник по другую сторону от слоя оксида. Такое объединение в пары позволяет парам Купера совершать туннельный переход через изолятор. Другими словами, уравнения Джозефсона предсказывали существование «сверхтока туннельного перехода».

Поскольку такой вывод казался слишком необычным – даже для квантовой теории, – Джозефсон попросил профессора Андерсона взглянуть на свои выкладки. Андерсон с удовольствием исполнил эту просьбу. «К этому времени я уже настолько хорошо знал Джозефсона, что принимал на веру все, что он говорил мне. Однако мне показалось, что его самого одолевают сомнения, поэтому я потратил целый вечер, чтобы проверить один из членов уравнения, которыми выражался ток». Этим членом был сверхток туннельного перехода. Возможно ли, чтобы пары Купера не встречали противодействия, проходя через изолятор? Казалось гораздо более правдоподобным, что они должны были бы распадаться на отдельные электроны, создавая обычный ток, подобно тому, что наблюдал Айвор Джайевер в своих ранних экспериментах, – ток, который встречал сопротивление на пути своего движения.

Выражая свои сомнения по этому поводу, Брайан Пиппард, консультировавший Джозефсона по его диссертации, ранее утверждал, что туннелирование пар Купера настолько невероятно, что обнаружить это явление не представляется возможным. Грубо говоря, вероятность этого феномена примерно такая же, как вероятность попадания молнии дважды в одну и ту же точку. Как известно, вероятность туннелирования отдельно взятого электрона через изолятор очень мала, поэтому вероятность одновременного туннелирования двух электронов, равная квадрату вероятности туннелирования отдельно взятого электрона, вообще близка к нулю. Тем не менее математические выкладки Джозефсона показывали, что вероятность одновременного туннелирования двух электронов должна быть примерно такой же, как вероятность туннелирования отдельно взятого электрона. «Однако уже через короткое время мне удалось убедиться, что ошибки в моих вычислениях не было», – написал он через несколько лет. Дальнейшие подтверждения его правоты поступили от Пиппарда и Андерсона, который проверил вычисления Джозефсона и не нашел в них ошибок. С математикой все было в порядке. Тем не менее все трое не испытывали полной удовлетворенности достигнутым результатом.

Другие выводы из теории Джозефсона также вызывали беспокойство [144]. Его уравнения предсказывали, что сила сверхтока туннельного перехода должна зависеть от относительных фаз квантовых волн по обе стороны барьера. Если эти фазы в двух сверхпроводниках каким-то образом слегка рассинхронизировались, это приводило к появлению сверхтока. Дальнейшая рассинхронизация фаз приводила к увеличению сверхтока – но лишь до определенного момента. Как только эти волны оказывались рассинхронизированы на четверть цикла (на 90 градусов), сверхток достигал максимальной величины. (Вообще говоря, уравнения Джозефсона предсказывали, что сверхток должен быть пропорционален синусу разности фаз.) Чтобы вывести волны из синхронизма, Джозефсон предполагал подавать электроны в систему путем подсоединения к такой «бутербродной» структуре внешнего источника тока. Если этот подаваемый ток не слишком велик, то, согласно уравнениям Джозефсона, он должен был переноситься в форме гипотетического сверхтока. Но, очевидно, таким способом можно было передавать лишь сверхток ограниченной величины. Если же попытаться передавать более сильный сверхток, дополнительные электроны уже не смогут образовывать пары. Пары самопроизвольно распадаются, создавая сопротивление и вырабатывая разность напряжений между двумя сверхпроводниками. Затем квантовые волны по обе стороны барьера рассинхронизируются, а их фазы начинают расходиться со скоростью, пропорциональной образовавшемуся напряжению. Поскольку сверхток зависит от синуса разности фаз, а разность фаз сейчас постепенно возрастает, то, согласно теории Джозефсона, постоянное напряжение на такой «бутербродной» структуре должно вырабатывать непостоянный, то есть переменный ток.

Это предсказание также не укладывалось в рамки здравого смысла. В обычном резисторе фиксированное напряжение должно создавать устойчивый поток электронов, то есть постоянный электрический ток (точно так же как вода должна равномерно перетекать из верхнего ведра, подвешенного на лестнице, в нижнее ведро). Однако, согласно уравнениям Джозефсона, сверхток туннельного перехода не движется в каком-то определенном направлении: он колеблется (осциллирует) на месте с частотой, пропорциональной образовавшемуся напряжению. Чтобы понять, насколько странно все это выглядит, представьте, что это означало бы в нашем случае двух ведер с водой, соединеных между собой шлангом. Если бы вместо воды эти ведра были наполнены квантовой жидкостью Джозефсона, эта жидкость противоестественным образом перетекала бы по шлангу из одного ведра в другое, туда и обратно, туда и обратно… При этом объем жидкости в каждом из ведер оставался бы неизменным. Допустим, мы подняли бы верхнее ведро еще выше, чтобы повысить давление. Это, однако, не привело бы к появлению дополнительного количества жидкости в нижнем ведре: просто жидкость стала бы еще быстрее совершать свои перетоки туда и обратно. В наши дни это явление называется эффектом переменного тока Джозефсона.

Еще одной удивительной особенностью этого явления было то, что, согласно уравнениям Джозефсона, отношение величины напряжения к частоте колебаний должно представлять собой некую универсальную константу природы. Она всегда должна оставаться одной и той же, независимо от того, какова величина осциллирующего тока или из какого металла изготовлены сверхпроводники. Это отношение задается постоянной Планка (которая представляет собой меру всех квантовых явлений), поделенной на удвоенную величину заряда электрона (фундаментальная единица электрического заряда). Эти числа предполагали, что сверхток должен чрезвычайно быстро перемещаться туда и обратно по туннелю: лишь тысячной доли вольта на «бутербродной» структуре было бы достаточно для выработки переменного тока частотой 100 миллиардов герц (то есть тока, перемещающегося туда и обратно по туннелю со скоростью 100 миллиардов раз в секунду). Для сравнения: самые быстродействующие из современных домашних компьютеров работают на частоте, в 50 раз меньшей.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.