Ритм вселенной. Как из хаоса возникает порядок - Стивен Строгац Страница 50
Ритм вселенной. Как из хаоса возникает порядок - Стивен Строгац читать онлайн бесплатно
Последующие концепции в квантовой теории казались еще более парадоксальными. Свет иногда вел себя как частицы, иногда – как волны. То же самое можно сказать об электронах, атомах и всех квантовых объектах. Даже пустота ничем не заполненного пространства уже не была тем, чем казалась. В теории квантового поля вакуум становился скоплением хаотически движущихся частиц и античастиц, внезапно рождащихся из ничего, а затем столь же быстро исчезающих.
Если бы нужно было выразить квинтэссенцию этой квантовой странности одним предложением, то таким предложением должен был бы стать знаменитый принцип неопределенности Вернера Гейзенберга, уточненная версия изречения, гласящего, что за все в нашем мире приходится платить: если вы пытаетесь что-то улучшить, то это улучшение непременно достигается за счет ухудшения чего-то другого. Принцип неопределенности выражает обратно-пропорциональное соотношение между флуктуациями определенных пар переменных, таких как позиция электрона и его скорость. Все, что снижает неопределенность одной переменной, обязательно должно повышать неопределенность другой переменной; вы не можете одновременно снизить неопределенность обеих переменных. Например, чем сильнее вы удерживаете электрон, тем сильнее он мечется. Пытаясь как можно точнее зафиксировать позицию электрона, вы усложняете себе задачу определения его скорости. С другой стороны, пытаясь как можно точнее зафиксировать скорость электрона, вы лишь повышаете неопределенность, «размытость» его позиции; в конечном счете это приводит к тому, что его позиция может оказаться практически какой угодно.
В течение долгого времени ученые утешали себя мыслью, что столь странные результаты ограничиваются лишь субатомарным уровнем. Сегодня нам известно больше. Сегодня мы понимаем, что сверхпроводимость – это не что иное, как вторжение квантовой механики в наш повседневный, макроскопический мир. В этом заключается намек на то, что странность, скрывавшаяся где-то в подвале, уже поднимается по лестнице на поверхность.
Оказалось, что ключом к разгадке сверхпроводимости является выдающаяся способность электронов объединяться в пары и двигаться синхронно. Чтобы понять, как вообще возможно такое «сотрудничество электронов», нам сначала нужно узнать немножко больше о правилах поведения квантовых групп [128].
Все квантовые частицы можно классифицировать, разделив их на «фермионы» и «бозоны» [129]. Фермионы являются отшельниками: два фермиона никогда не могут одновременно пребывать в одном и том же квантовом состоянии. Это правило, известное как принцип исключения Паули, обеспечивает строгий порядок заполнения электронами орбитальных оболочек вокруг атомов; электроны строго соблюдают очередь, занимая в каждый отдельный момент времени определенную, «персональную» орбитальную оболочку (по одному электрону в каждой оболочке), подобно вежливым людям, занимающим свои места в определенном ряду театра. Стремление фермионов избегать друг друга порождает в конечном счете базовые законы химии, в частности структуру периодической таблицы элементов, правила образования химических связей между атомами и поведение магнитов.
У бозонов противоположный характер. У них очень сильны стадные инстинкты. Сколь угодно большое их число может одновременно пребывать в одном и том же квантовом состоянии. Вообще говоря, они предпочитают находиться в обществе себе подобных: чем больше бозонов находится в каком-то определенном состоянии, тем привлекательнее это состояние для других бозонов. В частности, вероятность перехода какого-либо бозона в определенное состояние прямо пропорциональна количеству бозонов, уже пребывающих в этом состоянии, плюс единица. Это означает, например, что квантовое состояние, содержащее 99 бозонов, оказывается в 100 раз более привлекательным, чем незаполненное состояние. В этом смысле бозоны являются закоренелыми конформистами, «компанейскими ребятами». Им нравится петь хором.
Первым, у кого возникло представление о таком квантовом хоре, был Альберт Эйнштейн [130]. Это случилось в 1924 г. Недавно Эйнштейн получил письмо от молодого малоизвестного индийского физика по имени Шатьендранат Бозе (по-другому его имя произносится как Сатьендра Нат Бозе), у которого возникла парадоксальная идея, которую он хотел бы опубликовать; к сожалению, его статью уже отвергли в одном научном журнале, и теперь он хотел заручиться поддержкой столько авторитетного ученого, как Эйнштейн, прежде чем повторять свои попытки. В отличие от прочих писем, которые Эйнштейн в изобилии получал от всевозможных непризнанных гениев, это письмо заинтриговало Эйнштейна. Бозе придумал оригинальный способ доказательства закона излучения, который был впервые сформулирован Планком в 1900 г. и стал теоретическим прорывом, ознаменовав собой начало квантовой революции. Старое доказательство, предложенное Планком, имело характер ad hoc, то есть было ориентировано лишь на данный случай – это доказательство не вполне устраивало даже самого Планка. Но Бозе, по-видимому, удалось переформулировать его более изящным образом. Однако после более тщательного анализа идеи, предложенной Бозе, Эйнштейн обратил внимание на оригинальную логику, заложенную в вычисления Бозе: в ходе перечисления множества разных способов, какими неразличимые между собой квантовые частицы могли занимать энергетические уровни, Бозе предложил новые правила подсчета [131].
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments