Великая теорема Ферма - Саймон Сингх Страница 5
Великая теорема Ферма - Саймон Сингх читать онлайн бесплатно
Немало других математиков прожили столь же блестящую, но краткую жизнь в науке. В XIX веке норвежец Нильс Хенрик Абель внес свой величайший вклад в математику, когда ему исполнилось девятнадцать лет, и умер в нищете восемью годами позже также от туберкулеза. Шарль Эрмит сказал, что Абель «оставил математикам нечто такое, над чем им предстоит трудиться лет пятьсот», и не подлежит сомнению, что его открытия и поныне оказывают глубокое влияние на современную теорию чисел. Столь же одаренный современник Абеля Эварист Галуа сделал первостепенное открытие, будучи еще подростком, и умер в возрасте двадцати одного года.
Приведенные мной примеры предназначены не для того, чтобы читатель пришел к заключению, что математиков постигает кончина безвременная и трагическая. Я хочу подчеркнуть, что свои наиболее глубокие идеи математики выдвигают в юности, и, как сказал Харди, «я не знаю случая, когда бы серьезная математическая идея была высказана человеком старше пятидесяти». Достигнув среднего возраста, математики часто отходят на задний план и проводят остаток своих дней, занимаясь преподаванием или администрированием, но не математическими исследованиями. С Эндрю Уайлсом дело обстоит совсем иначе. Хотя он достиг почтенного сорокалетнего возраста, семь лет он работал над решением задачи в обстановке полной секретности, пытаясь найти решение единственной в своем роде величайшей проблемы в истории математики. В то время, как коллеги Уайлса подозревали, что математический дар его безвозвратно иссяк, он фантастически быстро продвигался к поставленной цели, изобретая новые методы и средства, которые теперь вознамерился открыть математическому сообществу. Его решение работать над проблемой в полной изоляции было весьма рискованной стратегией, неслыханной прежде в математическом мире.
Не обладая изобретениями, требующими патентования, математический факультет любого университета сопряжен с секретностью в меньшей степени, чем любой другой факультет. Сотрудники математического факультета наслаждаются открытым свободным обменом идей, как правило во время чаепитий, которые превратились в ежедневные ритуалы. Как следствие, все большее число статей публикуется в соавторстве или группами математиков, и слава делится на всех поровну. Но если профессор Уайлс действительно обнаружил полное и строгое доказательство Великой теоремы Ферма, то наиболее высоко ценимая награда в математике принадлежит ему, и только ему одному. Цена, которую он был вынужден уплатить за то, что вел свои исследования в тайне от коллег и ранее не обсуждал свои идеи и не проверял их на математическом сообществе, заключалась в высокой вероятности, что где-то в своих рассуждениях он допустил фундаментальную ошибку.
По своему замыслу Уайлс намеревался еще какое-то время поработать над проблемой Ферма, чтобы полностью проверить окончательный вариант своей рукописи. Но ему представилась уникальная возможность объявить о своем открытии в Институте сэра Исаака Ньютона, и Уайлс отбросил осторожность. Единственная цель существования этого Института состоит в том, чтобы собирать вместе на несколько недель самые выдающиеся умы мира и предоставлять им возможность проводить по своему усмотрению семинары по самым животрепещущим проблемам современной математики. Расположенное на задворках Кембриджского университета, вдали от студентов и разных помех, институтское здание спланировано и построено с таким расчетом, чтобы создать математикам все условия, позволяющие сосредоточиться на обсуждаемой проблеме и предпринять мозговой штурм. Внутри здания нет тупиков, в которых можно было бы затаиться. Все кабинеты выходят на форум. Предполагалось, что математики в основном будут собираться на форуме. Двери кабинетов рекомендуется держать открытыми. Передвигаясь по Институту, математик может не прерывать общения с коллегами. Доска висит даже в лифте, перемещающимся между тремя этажами. И по крайней мере одна доска есть в каждой комнате, не исключая ванных. В тот раз, о котором идет речь, в Институте Ньютона семинары шли под названием «L-функции и арифметика». Все наиболее выдающиеся специалисты мира по теории чисел собрались, чтобы обсудить проблемы, связанные со столь высокоспециализированной областью чистой математики, но только Уайлс понял, что L-функции могли бы дать ключ к доказательству Великой теоремы Ферма.
И хотя его очень привлекала возможность рассказать о своей работе столь выдающейся аудитории, все же главным, что заставило его объявить о своем открытии в Институте Ньютона, было то, что он находился в своем родном городе — Кембридже. Здесь Уайлс родился, вырос, здесь получила развитие его любовь к теории чисел, и именно в Кембридже он впервые столкнулся с проблемой, которой посвятил свою оставшуюся жизнь.
В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. «В школе я любил решать задачи, я брал их домой и из каждой задачи придумывал новые. Но лучшую из задач, которые мне когда-либо попадались, я обнаружил в местной библиотеке».
Эндрю Уайлс в возрасте десяти лет, когда он впервые узнал о Великой теореме Ферма.
Однажды по дороге из школы домой Эндрю Уайлс решил заглянуть в библиотеку на Милтон-роуд. По сравнению с библиотеками университетских колледжей эта библиотека была довольно бедной, но выбор книг по занимательной математике в ней был богатым, и эти книги часто привлекали внимание Эндрю. Их страницы были до отказа заполнены всякого рода научными курьезами и задачами-головоломками, и на каждый вопрос существовал готовый ответ, заботливо помещенный где-нибудь в конце книги. Но на этот раз Эндрю выудил книгу, в которой речь шла лишь об одной-единственной задаче, и решение ее не приводилось.
Это была книга Эрика Темпла Белла «Великая проблема» об истории одной математической задачи, корни которой уходят в Древнюю Грецию. Своего полного расцвета эта проблема достигла в XVII веке. Именно тогда великий французский математик Пьер де Ферма без всякого умысла сформулировал ее так, что она стала вызовом всему остальному миру. Выдающиеся математики один за другим принимались за наследие Ферма и были вынуждены смиренно признать, что оно оказалось им не по силам. За триста лет никому не удалось решить эту проблему. Разумеется, в математике есть немало других нерешенных проблем, но проблема Ферма занимает среди них особое место своей обманчивой простотой. Тридцать лет спустя после того, как он впервые прочитал книгу Белла, Уайлс рассказал мне, что он ощутил при первой встрече с Великой теоремой Ферма. «Она выглядела такой простой, и все же великие умы в истории математики не смогли доказать ее. Передо мной была проблема, понятная мне, десятилетнему мальчику, и я почувствовал, что с того самого момента я никогда не смогу отступиться от этой проблемы. Я должен был решить ее».
Проблема выглядела столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, — теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments