Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист Страница 5

Книгу Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист читать онлайн бесплатно

Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист - читать книгу онлайн бесплатно, автор Джефф Бломквист

1. Каждый предмет пребывает в состоянии покоя или равномерного прямолинейного движения, если на него не воздействует сила.

2. Предмет массой m подвергается ускорению a при воздействии на него силы F. В форме уравнения это записывается как F = ma.

3. Сила действия равна силе противодействия.


Три закона Ньютона – основа для описания движения предметов под воздействием силы. Первый закон описывает то, что происходит с предметом без воздействия сил: предмет либо пребывает в покое, либо двигается по прямой линии с постоянной скоростью. Мы поищем эквивалентное утверждение для квантовых частиц чуть позже и не слишком забежим вперед, если скажем, что квантовые частицы никогда не находятся в покое – они прыгают повсюду, даже если никакие силы на них не действуют. Собственно, само понятие силы в квантовой теории отсутствует, поэтому в ней в корзину для бумаг отправлен и второй закон Ньютона. Да-да, именно так: законы Ньютона выброшены в мусорное ведро, потому что оказались лишь приблизительно верными. Они хорошо работают во многих случаях, но полностью неприменимы, когда дело доходит до описания квантовых феноменов. Законы квантовой теории заменяют законы Ньютона, обеспечивая более точное описание мира. Физика Ньютона становится производной квантового описания, так что важно понять: дело обстоит не так, что «ньютоновская механика для крупных предметов, а квантовая – для мелких», – квантовая теория действует всегда.

Хотя нас не очень-то будет интересовать третий закон Ньютона, он заслуживает некоторых комментариев для любителей. Третий закон сообщает, что силы появляются парами: если я стою на Земле и оказываю на нее давление ногами, Земля противодействует в ответ. Таким образом, для «закрытой» системы сумма сил равна нулю, из чего, в свою очередь, следует, что общий импульс системы сохраняется. Мы будем использовать понятие импульса на протяжении всей книги. Для частицы импульс определяется как произведение массы частицы на ее скорость, что записывается как p = mv. Интересно, что сохранение импульса действительно имеет некоторый смысл в квантовой теории, даже несмотря на отсутствие в ней понятия силы.

Но сейчас нас интересует второй закон Ньютона.

F = ma означает, что если вы приложите известную силу к предмету и вычислите его ускорение, то отношение силы к ускорению и будет массой предмета. Тут, в свою очередь, предполагается, что мы знаем, как определить силу, но это не так уж сложно. Простой, хотя не очень точный и не очень практичный способ измерения силы, – потянуть предмет чем-то стандартным: допустим, средняя черепаха движется по прямой линии и с помощью ремня тянет за собой какой-то предмет. Назовем ее «Черепаха СИ», запечатаем в коробку и отправим в Международное бюро мер и весов, находящееся в городе Севр, Франция. Две тянущие черепахи будут прикладывать двойную силу, три – тройную и так далее. Таким образом, любые толкающие или тянущие усилия мы можем оценить в количестве средних черепах, которые требуются для их приложения.

Пользуясь этой системой, которая достаточно смехотворна, чтобы ее принял любой международный комитет по стандартам [3], мы можем просто заставить черепаху тянуть предмет и вычислить его ускорение, что позволит узнать его массу по второму закону Ньютона. После этого можно повторить процесс для второго предмета, вычислить его массу, а затем обе массы подставить в уравнение гравитации, чтобы определить существующую между массами силу притяжения. Но чтобы с помощью количества «черепашьих эквивалентов» узнать силу притяжения между двумя массами, нужно откалибровать всю систему под саму силу гравитации, для чего и требуется новый символ – G.

G – это очень важное число, которое называется гравитационной постоянной Ньютона и служит параметром гравитационной силы. Если мы удваиваем G, то мы удваиваем и эту силу, так что яблоко, направляясь к земле, ускоряется в два раза. Таким образом, это число описывает одно из фундаментальных свойств нашей Вселенной, и будь оно иным, мы жили бы в совершенно другой Вселенной. Сейчас полагают, что G имеет одно и то же значение во всей Вселенной и имело это значение во все времена (это число есть и в теории гравитации Эйнштейна, где тоже выступает в роли константы). В этой книге мы встретим и другие универсальные константы Вселенной. В квантовой механике наиболее важной считается постоянная Планка, названная в честь пионера квантовой физики Макса Планка и обозначаемая буквой h. Нам понадобится и скорость света (c), ведь это не только скорость, с которой свет распространяется в вакууме, но и универсальный предел скорости. Вуди Аллен однажды сказал: «Двигаться быстрее скорости света невозможно, да и нежелательно, ведь все время будет слетать шляпа».

Три закона Ньютона и закон притяжения – это все, что нужно для понимания движения в присутствии гравитации. Нет никаких других скрытых законов, которые мы не упоминали: этих четырех вполне достаточно, и они позволяют нам, например, понять орбиты планет Солнечной системы. Вместе эти законы серьезно ограничивают типы траекторий, по которым предметы могут перемещаться под воздействием притяжения. С помощью одних только законов Ньютона можно доказать, что все планеты, кометы, астероиды и метеоры в нашей Солнечной системе могут двигаться лишь по траекториям, известным как конические сечения. Самая простая из них – та, по которой с очень хорошей точностью двигается Земля в своем перемещении вокруг Солнца: это окружность. Но чаще планеты и их спутники двигаются по эллиптическим орбитам (эллипсы – это вытянутые окружности). Два других известных конических сечения – парабола и гипербола. Парабола – это траектория движения пушечного ядра при выстреле. Последнее коническое сечение, гипербола, – это траектория, по которой сейчас от нас удаляется по направлению к звездам самый далекий от Земли рукотворный объект в истории. Когда писалась эта книга, «Вояджер-1» находился на расстоянии около 17 610 000 000 км от Земли и удалялся от Солнечной системы со скоростью 538 000 000 км в год. Это прекраснейшее достижение инженерной мысли было запущено в 1977 году и продолжает поддерживать связь с Землей, записывая результаты измерений солнечного ветра на магнитофон и передавая их на Землю с мощностью 20 ватт. «Вояджер-1» и его побратим «Вояджер-2» – вдохновляющие примеры человеческой мечты об исследовании Вселенной. Оба космических корабля посетили Юпитер и Сатурн, а «Вояджер-2» – еще и Уран и Нептун. По Вселенной они передвигались с точным расчетом, используя гравитацию для резких ускорений при проходе между планетами и вылете в межзвездное пространство. При расчете курса на Земле использовались только законы Ньютона, которых оказалось достаточно, чтобы проложить оптимальный путь между внутренними и внешними планетами и далее к звездам. «Вояджер-2» отправится в сторону Сириуса, самой яркой звезды на небе, и окажется там всего через каких-то 300 000 лет. Все это мы сделали, все это мы узнали благодаря теории тяготения Ньютона и его законам движения.

Законы Ньютона обеспечивают интуитивно понятную картину мира. Как мы уже могли заметить, они принимают форму уравнений (математических соотношений между измеримыми величинами), которые позволяют с достаточной точностью предсказывать, как перемещаются объекты. Вся эта система предполагает, что объекты в любой миг где-то находятся и со временем плавно (без скачков) перемещаются с места на место. Это кажется настолько самоочевидной истиной, что можно бы ее и не комментировать, но на самом деле нужно понять, что это лишь предрассудок. Можно ли быть уверенными, что предметы действительно находятся тут или там и не пребывают в двух разных местах одновременно? Конечно, садовый сарай никак не может находиться в двух совершенно разных местах, это очевидно – но как насчет электрона в атоме? Не может ли он быть одновременно «здесь» и «там»? Прямо сейчас подобное предположение звучит безумно, во многом потому, что мы не можем представить такую картину своему мысленному взору, но со временем вы увидите, что так оно на самом деле и есть. На этой же стадии повествования, делая настолько странное замечание, мы ограничимся указанием на то, что законы Ньютона основаны на интуиции, поэтому, когда дело доходит до фундаментальной физики, они напоминают дом, построенный на песке.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.