Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу Страница 46
Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу читать онлайн бесплатно
Потенциал их безграничен, и мы уже вовсю используем транзисторы для изменения мира. Не будет преувеличением сказать, что транзистор – самое важное изобретение за последние 100 лет: современный мир построен на полупроводниковых технологиях и сформирован ими. С практической точки зрения эти технологии спасли миллионы жизней: в особенности стоит указать на применение вычислительных устройств в больницах, преимущества быстрых, надежных и распространенных по всему миру коммуникационных систем, использование компьютеров в научных исследованиях и для контролирования сложных промышленных производств.
Уильям Шокли, Джон Бардин и Уолтер Браттейн в 1956 году получили Нобелевскую премию по физике «За исследование полупроводников и открытие транзисторного эффекта». Возможно, никогда Нобелевская премия не присуждалась за работу, которая бы в такой степени непосредственно затрагивала жизни огромного числа людей.
В первых главах мы рассказывали о законах, по которым движутся мельчайшие частицы. Они перескакивают с места на место, без стеснения исследуя пространство и метафорически перенося с собой свои микроскопические циферблаты. Добавив множество циферблатов, соответствующих разнообразным способам, которыми они могут прибыть в некую определенную точку в пространстве, мы получаем единый общий циферблат, размер которого свидетельствует о вероятности найти частицу «там». Из диких, анархических проявлений квантовых скачков появляются более известные нам свойства повседневных предметов. В каком-то смысле каждый электрон, каждый протон и каждый нейтрон, присутствующие в вашем теле, постоянно исследуют всю Вселенную, и только когда вычислена общая сумма всех этих исследований, мы оказываемся в мире, где атомы нашего тела, к счастью, стремятся находиться в относительно стабильной форме – по крайней мере, на век или больше. Но мы до сих пор никоим образом не касались природы взаимодействий между частицами. Мы ухитрились довольно далеко продвинуться, не касаясь вопроса о том, на каком языке частицы разговаривают друг с другом. Во многом помогла идея потенциала. Но что такое потенциал? Если мир состоит исключительно из частиц, то, разумеется, мы можем совсем отказаться от смутного представления, что частицы двигаются «в потенциале», созданном другими частицами, и говорить уже о том, как именно движутся частицы и как взаимодействуют.
Современный подход к фундаментальной физике, известный как квантовая теория поля, действительно устраняет это понятие, добавляя к законам движения частиц новые законы, которые объясняют, как эти частицы взаимодействуют друг с другом. Эти законы оказываются более сложными, чем те, с которыми мы уже встречались, и одно из чудес современной науки в том, что, несмотря на всю сложность и запутанность мира природы, законов этих не так уж много. Альберт Эйнштейн писал: «Вечная тайна мира – в его понятности», а то, что «он понятен, это настоящее чудо».
Начнем с формулировки законов первой открытой квантовой теории поля – квантовой электродинамики, сокращенно QED. Истоки этой теории восходят к 1920-м годам, когда Дираку с особенным успехом удалось поставить электромагнитную теорию Максвелла на квантовые рельсы. Мы уже много раз встречались в этой книге с квантами электромагнитного поля, а именно с фотонами, но в то время с новой теорией было связано много очевидных проблем, остававшихся неразрешимыми в 1920–1930-е годы. Как именно, например, электрон испускает фотон при движении между энергетическими уровнями в атоме? И что происходит с фотоном, когда он поглощается электроном, что позволяет электрону перепрыгнуть на более высокий энергетический уровень? Очевидно, что фотоны могут создаваться и разрушаться во внутриатомных процессах, и то, как это происходит, не описывается той «старомодной» квантовой теорией, с которой мы до сих пор имели дело в этой книге.
В истории науки есть несколько легендарных собраний ученых – встреч, кажется, определенно изменивших ход науки. Возможно, это немного не так, поскольку обычно участники таких встреч уже много лет работали над своими проблемами, но состоявшаяся в июне 1947 года конференция в Шелтер-Айленде, на оконечности Лонг-Айленда в Нью-Йорке, обладает вескими основаниями на то, чтобы считаться катализатором научных открытий. Уже только список участников стоит того, чтобы прочитать его вслух и с выражением, потому что он краток и тем не менее содержит имена величайших американских физиков XX века. Вот он в алфавитном порядке: Ханс Бете, Дэвид Бом, Грегори Брейт, Виктор Вайскопф, Карл Дарроу, Хендрик Крамерс, Уиллис Лэмб, Дункан Макиннес, Роберт Маршак, Джон фон Нейман, Арнольд Нордсик, Роберт Оппенгеймер, Абрахам Пайс, Лайнус Полинг, Исидор Раби, Бруно Росси, Роберт Сербер, Эдвард Теллер, Джон Уилер, Джордж Уленбек, Ричард Фейнман, Герман Фешбах, Джон ван Флек и Джулиан Швингер. Читатель уже встречал в книге некоторые из упомянутых имен, а любой студент физического факультета, вероятно, знает большинство из них. Американский писатель Дэйв Барри однажды сказал: «Если одним словом определить, почему человеческая раса не раскрыла и никогда не раскроет полностью свой потенциал, то это будет слово “собрания”». Это, безусловно, верно, но встреча в Шелтер-Айленде была исключением. Собрание началось с презентации того, что с тех пор получило название лэмбовского сдвига. Уиллис Лэмб с помощью высокоточных микроволновых методов, разработанных в ходе Второй мировой войны, обнаружил, что спектр водорода на самом деле не до конца описывается старой квантовой теорией. Существовал мельчайший сдвиг наблюдаемых энергетических уровней, который нельзя было объяснить теорией, изложенной нами в первой части книги. Этот эффект был крохотным, но стал настоящим вызовом для собравшихся теоретиков.
Тут мы оставим Шелтер-Айленд, волнующийся после речи Лэмба, и обратимся к теории, возникшей в следующие месяцы и годы. Тем самым мы раскроем происхождение лэмбовского сдвига, а сейчас, чтобы разжечь ваш аппетит, приведем довольно загадочное описание ответа: протон и электрон в атоме водорода не одни.
QED – теория, описывающая, как электрически заряженные частицы, например электроны, взаимодействуют друг с другом и с частицами света (фотонами). Она одна способна объяснить все природные явления, за исключением гравитации и ядерных феноменов. К ядерным феноменам мы обратимся позже и объясним, почему атомное ядро не распадается, хотя представляет собой множество положительно заряженных протонов и нейтронов без заряда, которые в одну секунду разлетелись бы, если бы внутри ядра не происходили какие-то процессы. Практически все остальное – и уж точно все, что вы видите и ощущаете, – объясняется на глубинных уровнях QED. Материя, свет, электричество и магнетизм – все это QED.
Начнем с толкования системы, с которой мы неоднократно уже встречались в этой книге, а именно Вселенной с одним электроном. Кружки на рисунке со «скачками циферблатов» на рис. 3.6 показывают множество возможных местонахождений электрона в какой-то момент времени. Чтобы вывести вероятность нахождения электрона в некоторой точке Х в более позднее время, как говорят наши квантовые правила, мы должны позволить электрону перескочить в точку Х из любой возможной исходной точки. Каждый скачок приносит в точку Х циферблат, мы суммируем их и получаем ответ.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments