Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу Страница 44
Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу читать онлайн бесплатно
Следующее изложение – вдохновляющий пример прикладной физики и техники. Идея в том, чтобы сознательно загрязнить кусок чистого кремния или германия для создания некоторых новых доступных энергетических уровней электронов. Эти новые уровни позволят контролировать поток электронов и дырок, идущий через полупроводник, как мы можем с помощью клапанов контролировать движение воды по трубам. Конечно, контролировать ток, идущий по проводу, в принципе легко: достаточно дернуть рубильник. Но мы сейчас не об этом, а о том, как создать более тонкие переключатели и динамически контролировать с их помощью ток в цепи. Эти переключатели – строительные кирпичики логических схем, а из логических схем, в свою очередь, состоят микропроцессоры. Итак, как же все это работает?
Левая часть рис. 9.2 показывает, что происходит, если кусок кремния загрязнен фосфором. Уровень загрязнения можно точно контролировать, что очень важно. Представьте, что в кристалле чистого кремния каждый атом последовательно замещается атомом фосфора. Атом фосфора попадает на место, освобожденное атомом кремния, и единственная разница состоит в том, что у фосфора на один электрон больше, чем у кремния. Этот лишний электрон очень слабо, но связан со своим атомом, он не до конца свободен и занимает энергетический уровень, находящийся сразу под зоной проводимости. При низких температурах зона проводимости пуста, и лишние электроны, появляющиеся из атомов фосфора, располагаются на донорном энергетическом уровне, отмеченном на рисунке.
Рис. 9.2. Новые энергетические уровни, появившиеся в полупроводнике n-типа (слева) и полупроводнике p-типа (справа)
При комнатной температуре пара электрон-дырка в кремнии создается очень редко. Лишь один из примерно триллиона электронов получает достаточно энергии от термических колебаний решетки, чтобы перескочить из валентной зоны в зону проводимости. Напротив, поскольку донорный электрон в фосфоре очень слабо связан с атомом, велика вероятность, что он сможет совершить небольшой скачок с донорного уровня в зону проводимости. Итак, при комнатной температуре при уровне загрязнения выше чем один атом фосфора на триллион атомов кремния, в зоне проводимости будут преимущественно присутствовать электроны, освобожденные атомами фосфора. Это значит, что можно с очень высокой точностью контролировать присутствие мобильных электронов, которые способны проводить электричество, просто варьируя степень фосфорного загрязнения. Поскольку ток в этом случае переносят электроны, свободно движущиеся в полосе проводимости, мы говорим, что такой тип загрязненного кремния называется n-типом (от слова negative – отрицательный).
Правая часть рис. 9.2 показывает, что происходит, если вместо фосфора мы загрязняем кремний атомами алюминия. Атомы алюминия вновь располагаются среди атомов кремния и прекрасно замещают их. Разница в том, что у алюминия на один электрон меньше, чем у кремния. Так в чистом кристалле появляются дырки, в то время как при фосфорном загрязнении появлялись лишние электроны. Эти дырки расположены вблизи от атомов алюминия, и их можно заполнить электронами, которые перескакивают из валентной зоны соседних атомов кремния. «Дырчатый» акцепторный уровень показан на рисунке. Он располагается прямо над валентной зоной, потому что электрон из атома кремния в валентной зоне может легко перескочить в дырку, оставленную атомом алюминия. В этом случае естественно считать, что электрический ток переносится дырками, поэтому такой тип загрязненного кремния называется р-типом (от слова positive – положительный). Как и в предыдущем случае, при комнатной температуре уровень алюминиевого загрязнения может быть не более одной триллионной, прежде чем благодаря движению дырок из алюминия пойдет ток.
Итак, мы пока просто доказали, что можно сделать такой кусок кремния, который будет проводить ток – дав возможность либо электронам из атомов фосфора двигаться в зоне проводимости, либо дыркам из атомов алюминия двигаться в валентной зоне. Ну и что?
На рис. 9.3 показано, что мы на пути к чему-то важному: он демонстрирует, что происходит, если сложить вместе два куска кремния – один n-типа и один р-типа. Изначально в области n-типа движутся электроны из фосфора, а в области р-типа – электроны из алюминия.
Рис. 9.3. Соединение двух кусков кремния – n-типа и р-типа
В итоге электроны из области n-типа перетекают в область р-типа, а электроны из области р-типа – в область n-типа. В этом нет никакой загадки; электроны и дырки змеятся по сочленению двух материалов, как капля чернил растворяется в ванне с водой. Но поскольку электроны и дырки движутся в противоположных направлениях, они оставляют за собой области положительного заряда (в области n-типа) и области отрицательного заряда (в области р-типа). Такое расположение зарядов препятствует дальнейшей миграции по правилу «одноименные заряды отталкиваются», со временем наступает баланс и миграция заканчивается.
На второй иллюстрации рис. 9.3 показано, как можно описать это явление на языке потенциалов. Демонстрируется, как электрический потенциал изменяется по всему сочленению. В глубине области n-типа эффект сочленения мал, и поскольку наступило состояние равновесия, ток отсутствует. Значит, в этой области потенциал постоянен. Прежде чем двигаться дальше, надо еще раз разъяснить, почему нам важен потенциал: он просто показывает, какие силы действуют на электроны и дырки. Если потенциал ровный, электрон не будет двигаться, как не двигается мяч, лежащий на ровном полу.
Если потенциал уходит вниз, можно предположить, что электрон, находящийся вблизи этого падающего потенциала, будет тоже «катиться вниз». К сожалению, принято довольно неудобное решение считать, что снижение потенциала означает «повышение» электрона, то есть электроны потекут вверх. Иными словами, падающий потенциал служит для электрона барьером, что мы и изобразили на рисунке. Это сила, подталкивающая электрон прочь от области р-типа, как следствие создания отрицательного заряда благодаря произошедшей ранее миграции электронов. Эта сила предотвращает дальнейшее движение электронов из кремния n-типа в кремний р-типа. Использование снижения потенциала для иллюстрации восхождения электрона на самом деле не так глупо, как кажется, потому что сейчас большая наглядность достигается для дырок, так как они естественным образом текут вниз. Можно считать, что наш способ представления потенциала (движущегося с высокой точки слева до низкой точки справа) корректно описывает и тот факт, что падение потенциала не позволяет дыркам покинуть область р-типа.
Третья иллюстрация на рисунке – аналогия с текущей водой. Электроны слева готовы и намерены потечь вниз по проводу, но барьер мешает им сделать это. Точно так же дырки в области р-типа скапливаются не с той стороны барьера; водяной барьер и падение потенциала – два разных способа представления одного и того же. Так обстоят дела, если просто скрепить вместе два куска кремния – n-типа и р-типа. Однако их скрепление требует несколько больших усилий, чем можно предположить: их нельзя просто склеить, потому что такое сочленение не позволит электронам и дыркам свободно перетекать из одной области в другую.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments