Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд Страница 43
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд читать онлайн бесплатно
В газетах порой пишут, что иракская война тянулась дольше Второй мировой. Журналисты, конечно, имели в виду, что война в Ираке была продолжительнее периода активного участия Америки во Второй мировой войне, которая началась осенью 1939 года и закончилась лишь в 1945-м. Американцы склонны забывать, что ко времени атаки на Перл-Харбор шел уже третий год войны.
Возможно, я допускаю ту же эгоцентричную ошибку, говоря, что Битва при черной дыре завязалась в 1983 году, в мансарде у Вернера Эрхарада. Атака Стивена на самом деле началась в 1976 году, однако не бывает сражения без противника. Его нападение было в основном проигнорировано, хотя это и была прямая атака на один из самых надежных принципов физики — закон, утверждающий, что информация никогда не исчезает, или, в краткой форме, закон сохранения информации. Ввиду его исключительной важности для всего дальнейшего изложения давайте рассмотрим закон сохранения информации еще раз.
Информация навсегда
Что означает уничтожение в применении к информации? В классической физике ответ прост: информация уничтожается, если в будущем теряются следы прошлого. Как ни удивительно, это может происходить даже в случае детерминистических законов. Чтобы показать это, давайте вернемся к трехсторонней монете, с которой мы играли в главе 4. Три стороны монеты обозначались Р, О и Б (решка, орел и боковая сторона). В той главе два детерминистических закона я описал следующими диаграммами:
Оба закона обладают свойством детерминистичности, так что, каково бы ни было состояние монеты, можно с полной уверенностью указать ее следующее и предыдущее состояния. Сравним это с законом который описывается следующей диаграммой:
или формулой
Р=О О=Р Б=О
В словесной формулировке: если в один момент монета лежит решкой, то в следующее мгновение она ляжет орлом. Если она лежит орлом, то ляжет решкой. Если же она лежит на боку, то в следующий момент ляжет орлом. Данное правило совершенно детерминистично: с чего бы вы ни начали, будущее предопределено этим законом. Допустим, к примеру, начальное состояние было Б. Дальнейшая История полностью предопределена: БОРОРОРОР О… Если мы начнем с Р, то история будет: РОРОРОРОРОР О… Если же в начале будет О, то мы получим историю: ОРОРОРОРОР О…
С этим законом что-то не так, но что именно? Как и другие детерминистические законы, он полностью предопределяет будущее.
Но если попытаться определить прошлое, ничего не получится. Допустим, мы обнаружили монету в состоянии Р. Можно быть уверенными, что предыдущим состоянием было О. Пока все хорошо. Но попробуем сделать еще один шаг в прошлое. Имеются два состояния, которые ведут к О, а именно Р и Б. Это создает проблему: получили мы О из Р или из Б? Узнать это невозможно. Вот это я и называю потерей информации, но в классической физике такого никогда не случается. Математические правила, на которых строятся законы Ньютона и максвелловская теория электромагнетизма, не оставляют сомнений: за каждым состоянием следует единственное состояние, и предшествует ему также единственное.
Другой путь, на котором может теряться информация, связан с наличием в законе доли неопределенности. В этом случае нельзя быть полностью уверенным ни в будущем, ни в прошлом.
Как я уже объяснял, квантовая механика включает элемент случайности, но в более глубоком смысле информация в ней никогда не теряется. Я проиллюстрировал это на примере с фотоном в главе 4, давайте сделаем это снова, на этот раз на примере электрона, сталкивающегося с неподвижной мишенью вроде тяжелого ядра. Электрон подлетает слева, двигаясь в горизонтальном направлении.
Он сталкивается с ядром и рассеивается в некотором непредсказуемом новом направлении. Хороший квантовый теоретик рассчитает вероятность того, что электрон отскочит, например, в перпендикулярном направлении, но не сможет надежно это направление предсказать.
Есть два способа проверить, сохраняется ли информация о начальном движении. Оба они включают запуск электрона назад под управлением обращенных вспять законов.
В первом случае наблюдатель проверяет, где находится электрон непосредственно перед обращением закона. Это можно сделать разными способами, в большинстве из которых в качестве зондов служат фотоны. Во втором случае наблюдатель не беспокоится о проверке; он просто реверсирует закон, никак не вмешиваясь в поведение электрона. Результаты этих двух экспериментов разделаются радикально. В первом случае электрон, двинувшись назад, оказывается в итоге в случайном месте и двигается в непредсказуемом направлении. Во втором случае, когда проверка не выполнялась, электрон в конце возвратной последовательности всегда оказывается движущимся назад в горизонтальном направлении. Когда наблюдатель в первый раз после начала эксперимента посмотрит на электрон, он обнаружит, что тот движется точно так же, как в начале, только в обратную сторону. Похоже, что информация теряется лишь тогда, когда мы активно взаимодействуем с электроном. В квантовой механике до тех пор, пока мы не взаимодействуем с системой, информация, которую она несет, остается столь же нерушимой, как и в классической физике.
Атака Стивена
Нелегко найти две более мрачные физиономии, чем были у меня и Герарда 'т Хоофта в тот день в Сан-Франциско в 1983 году. Высоко над Франклин-стрит в мансарде Вернера Эрхарда была объявлена война и совершено открытое нападение на наши самые глубокие убеждения. Стивен Наглец, Стивен Храбрец, Стивен Разрушитель располагал всем тяжелым вооружением, а его ангельская/демоническая улыбка показывала, что он об этом знает.
В этом нападении не было ничего личного. Блицкриг был нацелен против центрального столпа физики — неразрушимости информации. Часто информация запутывается до полной нераспознаваемости, но Стивен доказывал, что биты информации, упавшие в черную дыру, навсегда пропадают из нашего мира. На доске у него была диаграмма, которая это доказывала.
В ходе своих блестящих исследований геометрии пространства-времени Роджер Пенроуз изобрел способ визуального представления всего пространства-времени на одной доске или одном листе бумаги. Даже если пространство-время бесконечно, Пенроуз искажал его, сжимая при помощи хитрых математических приемов, так чтобы оно целиком умещалось в конечной области. Диаграмма Пенроуза, нарисованная на доске в особняке Вернера, изображала черную дыру с битами информации, падающими за горизонт. Горизонт был показан диагональной линией, и как только бит ее пересекал, он не мог вырваться назад, не превышая скорости света. Диаграмма также показывала, что каждый такой бит обречен попасть в сингулярность.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments