ДНК. История генетической революции - Джеймс Д. Уотсон Страница 33
ДНК. История генетической революции - Джеймс Д. Уотсон читать онлайн бесплатно
В университете и аспирантуре Гилберт занимался физикой, а в 1956 году, через год после моего прибытия в Гарвард, стал работать на физическом факультете. Когда же я увлек его опытами с РНК, которыми занимался у себя в лаборатории, Гилберт забросил свою дисциплину ради моей. Вдумчивый и непреклонный Гилберт успел немало поработать на переднем крае молекулярной биологии.
Однако из двух методов секвенирования проверку временем выдержал вариант, предложенный Сенгером. Именно этот метод секвенирования был использован в проекте «Геном человека», а затем оказался востребованным и далее, пока не уступил место красивой химической технологии, изобретенной в британском Кембридже (об этом мы поговорим в главе 8). Некоторые химические соединения, расщепляющие ДНК и необходимые при секвенировании по методу Гилберта, сложны в обращении – чего доброго, начнут расщеплять ДНК самого исследователя. В свою очередь, при работе методом Сенгера используется тот же самый фермент, который обеспечивает естественное копирование ДНК в клетках, – ДНК-полимераза. Весь фокус в том, что при копировании пары оснований немного изменяются.
Сенгер использовал не только обычные дезокси-основания (А, Т, Г и Ц), которые встречаются в естественной ДНК, но и так называемые дидезокси-основания. Основания второй категории обладают замечательным свойством: ДНК-полимераза с готовностью внедряет их в цепочку ДНК (то есть копия собирается по образцу матричной цепи). Однако, после того как в цепочку попадет дидезокси-основание, другие основания в нее добавляться больше не могут. Иными словами, скопированная нить не может достраиваться после дидезокси-основания.
Допустим, у нас имеется матричная цепь с последовательностью ГГЦЦТАГТА. В эксперименте используется множество копий такой спирали. Теперь представьте себе, что эта цепь копируется при помощи ДНК-полимеразы, но в растворе, кроме А, Т, Г и Ц, присутствует еще и дидезокси-А. Фермент работает, сначала добавляя к цепи Ц (комплементарный исходному Г), затем еще Ц, затем еще Г и еще Г. Однако, когда фермент добирается до первого Т, открываются два варианта: либо он добавит к растущей цепочке обычный А, либо дидезокси-А. Если фермент подберет дидезокси-А, то цепь далее расти не сможет и получится короткой, с дидезокси A в конце: ЦЦГГддА. Но существует также возможность того, что цепь подхватит обычное A, и в этом случае ДНК-полимераза продолжит добавлять основания: Т, Ц и так далее. Дидезокси-основание в следующий раз сможет «закоротить» цепочку не раньше, чем фермент дойдет до следующего Т. Здесь, опять же, цепочка может подхватить либо нормальное А, либо дидезокси А (ддА). При присоединении ддА цепочка тоже получится обрубленной, но чуть более длинной, чем в первый раз: у этой цепочки будет последовательность ЦЦГГАТЦддА. Подобное происходит всякий раз, когда цепь дорастает до Т и далее к ней может присоединиться А. Если случится так, что цепочка подхватит обычное А, то она продолжит расти, а если подхватит ддА – то на этом завершится.
Что же в итоге? После эксперимента у нас имеется целый набор цепочек разной длины, скопированных с матричной ДНК. Что у них общего? Все они оканчиваются основанием ддА.
Теперь вообразите, что все происходит аналогично и с тремя оставшимися основаниями; в случае Т у нас в растворе будут обычные А, Т, Г, Ц плюс ддТ. В результате будут получаться молекулы ЦЦГГАддТ либо ЦЦГГАТЦАддТ.
Проведя реакцию всеми четырьмя способами – сначала с ддА, затем с ддТ, после этого с ддГ и с ддЦ, – получим четыре набора цепочек ДНК. В первой группе все цепочки заканчиваются на ддА, во второй – на ддТ и так далее. Как можно рассортировать эти слегка различающиеся цепочки в зависимости от слегка различающейся длины так, чтобы можно было логически вывести длину цепочки? Во-первых, можно организовать сортировку, уложив ДНК на пластинку, обработанную специальным гелем, а саму пластинку поместить в электрическое поле. Под действием электрического поля молекулы ДНК рассредоточатся по гелю. Скорость движения каждой цепочки есть функция ее длины – короткие цепочки движутся быстрее длинных. В течение фиксированного промежутка времени самый короткий фрагмент – в нашем случае ддЦ – уйдет дальше всех; чуть более длинный ЦддЦ уйдет не так далеко, а еще чуть более длинный ЦЦддГ пройдет еще меньший отрезок пути. Теперь вы догадываетесь, какой трюк применил Сенгер. Фиксируя относительные позиции всех этих мини-цепочек, движущихся сквозь гель, можно логически вывести, какова последовательность оснований в данном фрагменте ДНК: сначала идет Ц, затем еще Ц, затем Г и так далее.
В 1980 году Фред Сенгер получил Нобелевскую премию по химии совместно с Уолли Гилбертом и Полом Бергом, награжденным за вклад в разработку технологий, связанных с рекомбинантной ДНК (необъяснимо, почему такой чести не были удостоены ни Стэнли Коэн, ни Герб Бойер).
Для Сенгера это была вторая по счету Нобелевская премия [9]. В 1958 году он получил премию по химии за изобретение метода секвенирования белков – он научился определять последовательность аминокислот в белковой молекуле и таким способом выяснил состав человеческого инсулина. Однако сенгеровские методы секвенирования белков и ДНК совершенно не связаны ни в техническом, ни в идейном отношении. Каждый из методов он разработал с нуля, и, пожалуй, Сенгер заслуживает звания величайшего технического гения в ранней истории молекулярной биологии.
Фред Сенгер, умерший в 2013 году, не походил на «типичного» дважды нобелевского лауреата. Он родился в квакерской семье, стал социалистом, а в годы Второй мировой войны отказался от военной службы по религиозным убеждениям. Еще невероятнее, что он нигде не распространялся о своих достижениях, а нобелевские регалии также не хранил на виду. «Получаете красивую золотую медаль и относите ее на хранение в банк. Есть еще сертификат, я храню его на чердаке». Он даже отказался от рыцарского титула: «Рыцарство выделяет вас среди окружающих. А я не хочу выделяться». После ухода на покой Сенгер с удовольствием садовничал у себя дома близ Кембриджа, хотя иногда и посещал Сенгеровский центр (ныне называется «Институт Сенгера») – геномную лабораторию в Кембридже, открытую в 1993 году.
Метод секвенирования ДНК, предложенный Сенгером
Секвенирование подтвердило одно из наиболее замечательных открытий 1970-х годов. Уже было известно, что гены – это линейные цепочки, состоящие из оснований А, Т, Г и Ц, и что эти основания транслируются тройками, в соответствии с генетическим кодом. Из них собираются линейные цепочки аминокислот – такие молекулы называются «белками». Однако замечательные исследования, проведенные Ричардом Робертсом, Филом Шарпом и другими, показали, что у многих организмов гены образуют прерывистые участки и жизненно важные отрезки ДНК перемежаются с нерелевантными. Только после транскрипции матричной РНК эта путаница рассортировывается в процессе «редактирования», при котором ненужные участки удаляются. Это равноценно тому, как если бы в этой книге случайным образом встречались лишние абзацы, с виду перемешанные как попало, и в них рассказывалось бы то о бейсболе, то об истории Римской империи. Уолли Гилберт назвал такие вставные последовательности «интронами», а те участки, которые отвечают, собственно, за кодирование белков (то есть образующие функциональную часть гена), – «экзонами». Оказывается, что интроны встречаются в ДНК сравнительно сложноорганизованных существ; у бактерий их нет.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments