Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус Дю Сотой Страница 33

Книгу Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус Дю Сотой читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус Дю Сотой читать онлайн бесплатно

Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус Дю Сотой - читать книгу онлайн бесплатно, автор Маркус Дю Сотой


Искусство мыслить рационально. Шорткаты в математике и в жизни

Рис. 4.1. Измерение расстояний в Солнечной системе при помощи треугольников


Как и Эратосфен, Гиппарх использовал две разные точки на поверхности Земли. На Геллеспонте [51] затмение было полным, а в Александрии – лишь частичным: там Луна закрывала только четыре пятых Солнца. Благодаря этому Гиппарх, подобно Эратосфену, получил расстояние, которое он мог измерить на Земле. Сочетание расстояния между двумя точками с измеренными углами, под которыми было видно затмение, позволило ему вычислить расстояние от Земли до Луны тригонометрическими методами.

Этот тригонометрический шорткат давал поразительные возможности. Он побудил Гиппарха начать подготовку первого в истории примера тригонометрических таблиц. В них можно было взять какой-нибудь угол и найти отношение длин сторон прямоугольного треугольника, содержащего такой угол. Даже здесь математики открыли шорткаты, избавляющие их от необходимости строить множество треугольников и измерять длины сторон и величины углов каждого из них.

Возьмем, например, равносторонний треугольник: все его стороны одинаковы, а все углы равны 60 градусам. Проведем из одной из его вершин линию, делящую угол при этой вершине на два угла по 30 градусов и образующую с основанием угол 90 градусов. Косинус угла 60 градусов – это отношение длин сторон, образующих этот угол во вновь построенном прямоугольном треугольнике. Легко видеть, что он равен 1/2, потому что длина катета этого нового треугольника равна половине длины стороны исходного равностороннего треугольника.


Искусство мыслить рационально. Шорткаты в математике и в жизни

Рис. 4.2. Косинус 60°


Но математики открыли и изящную формулу, связывающую косинусы углов одного треугольника с косинусами углов треугольника, содержащего угол, вдвое меньший. Это дает нам возможность вычислять и другие величины.

cos2 x = 1/2 + 1/2 cos (2 x)

При помощи этих шорткатов можно составить таблицы косинусов множества разных углов. Именно эти таблицы стали самым действенным измерительным средством для исследования ночного неба. Они же сыграли ключевую роль в прокладывании шорткатов к измерениям на Земле. Их наверняка использовал при проведении геодезических съемок Ганновера и Гаусс. Землемеры до сих пор пользуются этим математическим шорткатом к измерениям.

Например, если вы хотите узнать высоту дерева, измерять ее от корней до вершины складным метром будет делом довольно трудным. Вместо этого геодезист отходит от дерева на некоторое расстояние и измеряет, под каким углом проходит прямая, соединяющая почву с вершиной дерева. Произведя гораздо более простое измерение расстояния между геодезистом и основанием дерева и найдя в таблицах тангенс нужного угла (величину, выражающую отношение длин двух коротких сторон треугольника [52], в данном случае – высоты дерева и расстояния от его основания до геодезиста), геодезист может найти высоту дерева, не залезая ни на какую лестницу.

Красивую демонстрацию способностей тригонометрии по части создания шорткатов дает история измерения метра. Можно подумать, что измерение метра – дело довольно странное, поскольку метр и есть единица измерения. Но история эта начинается с определения того, что такое, собственно говоря, метр.

Измерение метра

С тех самых пор, когда первые древние цивилизации начали строить города, нам понадобились единицы измерения, помогающие вести строительство согласованно. Первые варианты таких единиц появились еще у древних египтян, которые ориентировались на части тела. Локтем называлось расстояние от локтя до кончика среднего пальца. Такая же привязка к частям тела ясно видна в единицах измерения, бытовавших до введения метрической системы. Фут, разумеется, соответствовал длине ступни [53]. Дюйм во многих европейских языках называется тем же словом, что и большой палец [54]. Ярд тесно связан с длиной человеческого шага. Интересно отметить, что единицу под названием «род», которую использовали для измерения земли в саксонские времена, определяли следующим образом: это суммарная длина левых ступней первых 16 человек, вышедших из церкви воскресным утром. Однако размеры и формы тела людей настолько разнятся, что и результаты таких измерений должны получаться чрезвычайно непостоянными.

Король Генрих I попытался решить эту проблему, распорядившись сделать эталоном для стандартизации этих единиц измерения королевское тело. Он постановил, что ярдом следует считать расстояние от кончика носа короля до кончика большого пальца его вытянутой руки. Но и у этого решения, разумеется, были свои недостатки, так как длина ярда могла изменяться каждый раз, когда на престол вступал новый монарх.

Вожди Французской революции полагали, что следует ввести эгалитарную систему измерений, доступную всем. Галилей доказал, что период колебаний маятника зависит от его длины, а не от веса или размаха колебаний. Сначала предложили считать метром длину маятника, колеблющегося с периодом две секунды. Однако выяснилось, что период колебаний зависит еще и от силы тяжести, которая бывает разной в разных точках мира.

Тогда решили определить метр как одну десятимиллионную часть расстояния от полюса до экватора. Хотя в принципе измерить это расстояние мог кто угодно, вскоре стало ясно, что на практике такое определение неудобно. Измерить расстояние от полюса до экватора и привезти в Париж точный метр поручили двум ученым, Пьеру Мешену и Жану-Батисту Деламбру. Но, как понял еще Эратосфен, для этого было вовсе не обязательно измерять все расстояние. Двое ученых решили измерить расстояние между Дюнкерком и Барселоной – городами, находящимися приблизительно на одной и той же долготе. Затем они собирались вывести из результатов этих измерений расстояние от полюса до экватора – так же, как сделал Эратосфен.

Деламбр начал свой путь с севера, из Дюнкерка, а Мешен, которому был поручен южный участок, – из Барселоны. Они договорились встретиться посередине, в южнофранцузском городе Родезе [55]. Но как они вычисляли расстояния? Прежде всего им нужна была стандартная мера длины, которую оба использовали бы в своих измерениях. Но даже при наличии такой меры они не могли перекладывать такую линейку на всем пути от Дюнкерка до Барселоны.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.