Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг Страница 32

Книгу Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг читать онлайн бесплатно

Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг - читать книгу онлайн бесплатно, автор Дэйв Голдберг

Как же мы собираемся вытащить одну из этих негодниц из коллайдеров? До сих пор мы говорили о столкновениях протонных пучков, но на самом деле есть занятие поинтереснее, чем сталкивать протоны. Когда частицы разгоняются, они набирают очень много энергии. Но когда встречаются два протона, сталкиваются не сами протоны, а их податливое содержимое.

Кварки и глюоны внутри каждого протона набирают во время пути вокруг коллайдера много энергии, и именно столкновение глюона с глюоном и высвобождает большое количество энергии, из которой создаются гигантские частицы вроде частицы Хиггса.


Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности

Почти все это мы додумали – или, лучше сказать, сделали крайне схематичный набросок, основанный на том, что нам известно. Нам известно, что эти частицы никогда не были засвидетельствованы ни в одном ускорителе частиц, однако в БАК можно будет проводить эксперименты с небывало высокими энергиями. Это значит, что если в предыдущих ускорителях мы уже исследовали нижнюю часть спектра масс, то теперь сможем искать самые массивные из частиц Хиггса, предсказываемых теорией. И мы уверены, что если столкнуть два кварка с достаточно высокой энергией, в результате реакции появится частица Хиггса.

Если она существует.

VI. Как же старина БАК, такой малюсенький, уничтожит такой большой мир?

Итак, мы наконец поняли, зачем построили БАК, но мы знаем и то, что любопытному на днях прищемили нос в дверях и любопытство сгубило кошку [74]. Если мы откроем частицу Хиггса, будет здорово. Это определенно докажет, что мы страшно умные, но нам бы очень не хотелось перемудрить. Это не в наших интересах.

Например, если мы сумеем получить одну массивную частицу – частицу Хиггса, – столкнув два кварка, не окажется ли, что мы сумеем получить и другую, совсем другую частицу, крайне опасную? Конечно, при высокоэнергичном столкновении можно получить много всякой всячины. Общественность боится, что если две частицы столкнутся, они создадут что-то очень-очень страшное: черную дыру или некоторую экзотическую материю под лирическим названием «страпельки». Могут ли они уничтожить мир?


Ультрасупермегакошмарный сценарий № 1. Черная дыра заглатывает Землю изнутри

О черных дырах мы поговорим подробно в главе 5, а сейчас вам нужно знать лишь один важный факт: если вы уроните ключи в черную дыру, забудьте о них, поскольку их, увы, уже не вернуть. Существует точка, откуда нет возврата, – так называемый горизонт событий, – и чем больше вещества падает в черную дыру, тем больше становится горизонт событий, а следовательно, и черная дыра.

Так что же произойдет, если два протона столкнутся в БАК и каким-то образом превратятся в черную дыру? Черная дыра будет массой самое большое в 14 тысяч масс протона – то есть по человеческим масштабам совсем крохотулечная. Более того, горизонт событий будет даже меньше, чем размер ядра атома. Нужно быть очень метким, чтобы уронить в нее хотя бы частичку.

Должно быть, вам кажется, будто можно вздохнуть с облегчением – ан нет, не расслабляйтесь! Следует помнить, что наша микроскопическая черная дыра – неостановимая машина для убийств. Стоит ей натолкнуться на другие частицы, и она их поглотит и будет расти все быстрее и быстрее. Мы боимся, что микроскопическая черная дыра, сформировавшись, начнет расти, упадет к центру Земли, где продолжит расти, и впоследствии поглотит Землю.

Ужас, правда?

БАК и его головная организация ЦЕРН были так озабочены проблемами связей с общественностью, которые возникли при строительстве и запуске коллайдера, что создали две экспертные группы – одну в 2003-м, другую в 2008 году, – которые должны были выяснить, есть ли вероятность, что мир будет уничтожен. Их заключение гласит, что «нет никаких оснований считать, что БАК представляет собой какую бы то ни было угрозу». Еще бы! Что еще они могли сказать? Однако если мы с вами немного подумаем, то придем к тому же заключению.

Первая утешительная новость – тот факт, что все процессы, которые будут происходить в БАК, уже происходили на Земле больше 100 тысяч раз, и мы по-прежнему с вами и можем это обсуждать. Космические лучи двигаются с энергиями даже выше, чем те, которых мы достигнем в БАК. И они постоянно врезаются в атмосферу. Все опасности, связанные со столкновениями высокоэнергичных протонов, повторялись снова и снова.

Земля по-прежнему существует, следовательно, БАК не уничтожит Землю.

Давайте забудем о том, что Земля по-прежнему существует, и подумаем о том, почему она до сих пор не погибла. Прежде всего учтем, что, несмотря на колоссальные энергии, мы можем производить в БАК только частицы ниже определенной массы. Как мы уже говорили, верхний предел – примерно 14 тысяч масс протона. На практике он еще ниже, так как сталкиваются на самом деле кварки и глюоны, а не протон целиком. На самом деле будут создаваться частицы лишь примерно в тысячу раз массивнее протона.

С другой стороны, если мы хоть что-то понимаем в устройстве Вселенной, то знаем, что минимальная масса черной дыры составляет примерно 20 миллиардных долей килограмма – это так называемая масса Планка. Кажется, что она очень мала, но это примерно в квадрильон раз больше, чем самые массивные частицы, которые можно получить в БАК.

Откуда берутся эти пределы? Из неопределенности. В главе 2 мы увидели, что нельзя с определенностью сказать, где находится частица, и чем меньше ее масса, тем больше неопределенность. С другой стороны, когда мы говорим о черных дырах, то имеем в виду, что вся их масса заключена в пределах горизонта событий. Вывод: если черная дыра слишком мала, то она вся «не поместится» в пределы горизонта событий. Точка пересечения – величина массы Планка.

Все наши знания показывают, что черные дыры размером меньше массы Планка образовываться не могут. Но вдруг мы ошиблись и они все равно образуются?

В главе 5 мы убедимся, что черные дыры в конце концов исчезают. Чем меньше черная дыра, тем быстрее она испаряется. Рассуждать о том, насколько быстро испарится черная дыра из БАК, бессмысленно, даже если предположить, что такая дыра все-таки образуется. Для сравнения скажем, что с того момента, когда черная дыра сформируется, до того момента, когда она исчезнет, она сможет пройти лишь микроскопическую долю размера ядра атома. Иначе говоря, у нее не будет времени, чтобы что-то поглотить.

Более того, мы дадим руку на отсечение, что черная дыра испарится. Если физика частиц нас чему-то и научила, так этому простому правилу: если частицу удается создать в столкновении, значит, она способна распадаться.


Ультрасупермегакошмарный сценарий № 2. Образуются страпельки, которые затем сольются в кристалл, отчего весь мир станет странным. То есть странной материей

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.