Бозон Хиггса. От научной идеи до открытия «частицы Бога» - Джим Бэгготт Страница 32

Книгу Бозон Хиггса. От научной идеи до открытия «частицы Бога» - Джим Бэгготт читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Бозон Хиггса. От научной идеи до открытия «частицы Бога» - Джим Бэгготт читать онлайн бесплатно

Бозон Хиггса. От научной идеи до открытия «частицы Бога» - Джим Бэгготт - читать книгу онлайн бесплатно, автор Джим Бэгготт

«Зависит ли инерция тела от содержания в нем энергии?» – спрашивал Эйнштейн в 1905 году. Ответ: да. Около 99 процентов массы протонов и нейтронов – это энергия, переносимая безмассовыми глюонами, которые удерживают кварки внутри нуклонов. «Масса, казалось бы неразложимое свойство материи, синоним ее инертности и сопротивления переменам, – писал Вильчек, – оказывается проявлением гармоничного взаимодействия симметрии, неопределенности и энергии» [111].


Глэшоу посетил Брукхейвенскую лабораторию в августе 1974 года, чтобы опять уговорить экспериментаторов начать поиск очарованного кварка. Его услышал американский физик Сэмюэл Тинг. Он готовился исследовать высокоэнергетические протон-протонные взаимодействия на 30-гигаэлектронвольтном сильнофокусирующем синхротроне и как следует поискать электрон-позитронные пары в неразберихе образующихся адронов.

Когда данные показали, что электрон-позитронные пары накапливаются в узком «резонансе» при энергии около 3 ГэВ, экспериментаторы даже не знали, что об этом подумать. Они хотели устранить очевидные источники ошибок и перепроверить анализ. Безрезультатно. Пик упорно фиксировался на 3,1 ГэВ и упорно оставался узким. Возникло подозрение, что они напали на какое-то новое физическое явление.

Тинг предпочитал не рисковать. У него была репутация человека, который находит ошибки в экспериментах других физиков, и ему не хотелось, чтобы кто-то нашел ошибки у него. Его убеждали опубликовать результаты, но он отказывался, пока они не смогут подтвердить свои данные.

Тем временем на Западном побережье США у физика Стэнфордского университета Роя Швиттерса возникла одна проблема. В середине 1973 года в Стэнфордском центре ускорителей вступил в строй Стэнфордский асимметричный накопитель позитронного и электронного пучков (сокращенно SPEAR), в котором начали сталкивать разогнанные электроны и позитроны. Швиттерс нашел ошибку в одной из компьютерных программ, которые использовались для анализа данных, полученных в ходе экспериментов на SPEAR. Исправив ошибку, он снова проанализировал данные экспериментов за июнь 1974 года и увидел некоторую упорядоченность – маленькие бугорки на энергиях 3,1 и 4,2 ГэВ. Руководитель проекта американский физик Бертон Рихтер в конце концов распорядился реконфигурировать SPEAR для энергии столкновений около 3,1 ГэВ, так чтобы экспериментаторы вернулись и посмотрели еще раз.

К ноябрю 1974 года стало ясно, что и группа Тинга в Брукхейвене, и группа Рихтера в Стэнфордском центре открыли одну и ту же новую частицу, мезон, образованный очарованным кварком и очарованным антикварком. Группа Тинга решила назвать ее J-частицей, а группа Рихтера назвала ее ψ (пси). Это совместное открытие позднее окрестили ноябрьской революцией.

После этого случилась небольшая неразбериха из-за первенства. Обе группы не хотели уступать право первенства и признавать название мезона, которое ему дала другая группа, и его до сих пор называют J/ψ-мезоном. Тинг и Рихтер разделили Нобелевскую премию по физике за 1976 год.


Открытие J/ψ-мезона стало триумфом теоретической и экспериментальной физики. Кроме того, оно помогло привести в порядок структуру фундаментальных частиц – основу того, что быстро превращалось в современную Стандартную модель физики элементарных частиц.

Она состояла уже из двух поколений фундаментальных частиц, каждое из которых включало два лептона и два кварка, а также частицы – переносчики взаимодействий между ними. Электрон, электронное нейтрино, верхний кварк и нижний кварк входят в первое поколение. Мюон, мюонное нейтрино, странный кварк и очарованный кварк – во второе поколение, они отличаются от первых прежде всего массами. Фотон переносит электромагнитное взаимодействие, W– и Z-частицы переносят слабое ядерное взаимодействие, а восемь цветных глюонов – сильное ядерное или цветовое взаимодействие между цветными кварками.

Но к весне 1977 года были накоплены убедительные данные в пользу даже еще более тяжелого варианта электрона, который назвали тау-лептоном. Однако это было не то, что хотели услышать физики.

Тау-лептону требовалось тау-нейтрино, и неизбежно стали возникать гипотезы, что на самом деле это три поколения лептонов и кварков. Американский физик Леон Ледерман из Фермилаба обнаружил ипсилон (Υ) в августе 1977-го. Это мезон, состоящий из прелестного кварка (b-кварка), уже известного на тот момент, и его антикварка. Имея массу около 4,2 ГэВ, прелестный кварк представляет собой более тяжелый, относящийся к третьему поколению вариант нижнего и странного кварков с зарядом —1/3. Предполагалось, что последний представитель третьего поколения – истинный кварк – еще тяжелее и будет найден, когда будут построены коллайдеры, способные достигать необходимой энергии столкновения.

Хотя третье поколение лептонов и кварков проявилось довольно неожиданно, оно очень легко встроилось в Стандартную модель (см. рис. 18). На симпозиуме в Фермилабе в августе 1979 года были представлены данные о так называемых струях кварков и глюонов, полученных в экспериментах по электрон-позитронной аннигиляции. Это направленные всплески адронов, возникающие в процессе образования пары кварк – антикварк, причем один из кварков также «высвобождает» энергетический глюон. Эти характерные «трехструйные» события самым поразительным образом продемонстрировали кварки и глюоны.

До сих пор не хватало истинного кварка, как и непосредственных данных о W– и Z-частицах, переносчиках слабого взаимодействия. Когда Стандартная модель стала общепринятой, Глэшоу, Вайнберг и Салам узнали, что им собираются вручить Нобелевскую премию по физике 1979 года за их работу над единой электрослабой теорией.

Теперь соревнование шло за то, кто первым соберет все частицы и закончит коллекцию. В своей Нобелевской лекции Вайнберг объяснил, что электрослабая теория предсказывает массы W– и Z-частиц примерно на уровне 83 ГэВ и 94 ГэВ соответственно [112].

Еще в июне 1976 года ЦЕРН ввел в действие свой протонный суперсинхротрон (ПСС) – 6,9-километровый кольцевой протонный ускоритель, способный генерировать энергию частиц до 400 ГэВ. За месяц до его пуска протонный ускоритель в Фермилабе превзошел эту энергию, достигнув 500 ГэВ. Но когда частицы разбиваются о неподвижные мишени, это приводит к значительным потерям, поскольку отскакивающие частицы забирают энергию. В установках такого вида энергия, которую можно было бы направить на создание новых частиц, растет только как квадратный корень из энергии частицы в пучке.


Бозон Хиггса. От научной идеи до открытия «частицы Бога»
Бозон Хиггса. От научной идеи до открытия «частицы Бога»

Рис. 18

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.