Остров знаний. Пределы досягаемости большой науки - Марсело Глейзер Страница 31

Книгу Остров знаний. Пределы досягаемости большой науки - Марсело Глейзер читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Остров знаний. Пределы досягаемости большой науки - Марсело Глейзер читать онлайн бесплатно

Остров знаний. Пределы досягаемости большой науки - Марсело Глейзер - читать книгу онлайн бесплатно, автор Марсело Глейзер

Будучи самым лучшим описанием гравитации, доступным нам на сегодняшний день, теория Эйнштейна позволяет делать интересные предположения. Базируясь на подтвержденном наблюдениями предположении о том, что материя в больших объемах распределена гомогенно и изотропно (то есть одинаково во всех направлениях, как гласит космологический принцип), теория может делать количественные утверждения относительно геометрии космоса в целом. Для этого космологи представляют материю и излучение в виде гомогенного газа, обладающего энергетической плотностью (то есть массой и/или энергией на единицу объема) и давлением (силой, с которой газ давит на единицу площади, как делаете вы, когда надуваете воздушный шарик). В теории Эйнштейна и плотность, и давление газа влияют на искривление пространства и, соответственно, на динамику космоса. [67] Для обычной материи или излучения энергетическая плотность и давление имеют положительные значения в уравнениях, моделирующих развитие Вселенной. В результате мы получаем Вселенную, которая расширяется со временем, но в которой скорость расширения постепенно снижается. В зависимости от количества материи такая Вселенная может либо схлопнуться, либо продолжить расширение, но со скоростью, медленно приближающейся к нулевой в далеком будущем. Исключением является Вселенная с открытой геометрией, которая просто продолжит расширяться. Но нормальность материи и излучений – это совсем не обязательное явление в физике.

В общей теории относительности под влиянием давления на искривленное пространство-время могут происходить удивительные вещи: некоторые типы материи приобретают загадочные гравитационные свойства.

Для начала вот вам краткий экскурс на физическую кухню. Вода существует в трех состояниях: твердом (лед), жидком и газообразном (пар). Для того чтобы перевести ее из одного состояния в другое, необходимо изменить ее температуру. Чтобы жидкость превратилась в твердое тело, ее нужно поставить в холодильник с температурой ниже точки замерзания, то есть 32 градуса по Фаренгейту (или 0 по Цельсию). Жидкая вода внутри холодильника находится в неестественном состоянии, поэтому она трансформируется – выбрасывает энергию в окружающую среду и медленно превращается в лед. Можно сказать, что внутри холодильника жидкая вода попадает в метастабильное состояние – такое, при котором в ней содержится больше энергии, чем необходимо. Смена метастабильного состояния стабильным называется фазовым переходом. [68] Могут ли другие виды материи совершать фазовый переход? Конечно! Это происходит постоянно при соответствующей температуре (и/или давлении).

Тот же принцип применим и к физике частиц. Частицы материи также могут проходить через различные фазы, в рамках которых меняются их свойства. Например, мы с вами существуем в нормальной фазе материи, в которой электроны весят в две тысячи раз меньше, чем протоны. Материю в этой фазе можно сравнить с водой в состоянии льда. Однако при повышении энергии частицы начинают деформироваться и их массы постепенно уменьшаются до нуля. Представьте себе, что мы могли бы взять кусок такой материи в руки при текущем уровне энергии. Как и жидкая вода в холодильнике, этот кусок не имеющих массы электронов и протонов (или, еще лучше, кварков, составных элементов протонов) оказался бы в метастабильном состоянии. Оно не продлилось бы долго – материя быстро перешла бы в другую, более привычную нам фазу. Несмотря на то что современные ускорители пока не в состоянии создавать такие метастабильные частицы материи без массы, есть все основания полагать, что это будет возможно в будущем. Как когда-то изобретение холодильника, такие технологии требуют времени и фантазии (и еще денег, кучи денег).

Но есть одно место, в котором такой метастабильной материи имеется в избытке, – это ранняя Вселенная. Раньше космос был горячее, а уровни энергии – выше. В течение одной триллионной доли секунды после Большого взрыва температура и плотность Вселенной были достаточными для того, чтобы материя находилась в метастабильном состоянии. [69] И вот что удивительно: метастабильная материя имеет отрицательные значения в уравнениях, описывающих космическое расширение. А общая теория относительности утверждает, что отрицательное давление ускоряет расширение Вселенной, а не замедляет его. Именно эта энергия, скрытая в метастабильной материи, двигает нашу Вселенную вперед. Представьте себе груз, подвешенный на сжатой пружине. Если отпустить груз, накопленная энергия пружины толкнет его вперед. Отрицательное давление делает примерно то же самое с геометрией космоса. Итак, мы приходим к удивительному заключению: ранняя Вселенная могла переживать периоды ускоренного расширения, когда масса находилась в метастабильном состоянии. Этот эффект оказался настолько всеобъемлющим, что метастабильного состояния больше не требуется – космическое ускорение происходит всегда, когда материя не находится в своем нормальном состоянии, то есть при минимальном уровне энергии. В качестве аналогии можно привести мяч на наклонной плоскости. Он будет скатываться по ней до тех пор, пока не найдет стабильную точку, в которой сможет вернуться в состояние покоя. Соответственно, в любой точке на склоне мяч будет находиться в «смещенном» состоянии, а его энергия будет выше, чем у подножия склона. Точно так же и Вселенная, заполненная материей в смещенном состоянии, будет расширяться все быстрее и быстрее до тех пор, пока не «скатится» до минимального уровня энергии.

Внимательный читатель вспомнит, что мы уже обсуждали ускоренное расширение, когда говорили про космологическую постоянную. До тех пор пока материя остается в смещенном состоянии (то есть в любой точке на склоне), она имеет силу космологической постоянной. Основное различие состоит в том, что космическое ускорение, возникающее под влиянием космологической постоянной, имеет неизменное значение (потому-то она и называется постоянной), а для материи ускорение может уменьшаться и увеличиваться в зависимости от того, насколько она отклоняется от нормального состояния. Такое отклонение часто называют энергией ложного вакуума, но мы будем обозначать ее термином «смещенная энергия», так как это избыточная энергия, возникающая при смещении из нормального состояния. [70] Чем выше уровень смещенной энергии, тем быстрее происходит космическое ускорение.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.