Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир Страница 3

Книгу Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир читать онлайн бесплатно

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир - читать книгу онлайн бесплатно, автор Джон Дербишир

И еще одна благодарность. Я придерживаюсь того суеверия, что всякая книга, выходящая за рамки ремесла, — другими словами, всякая книга, написанная с тщанием и любовью, — имеет своего духа-хранителя. Этим я просто хочу сказать, что за всякой книгой стоит определенный конкретный человек, образ которого не покидает мысли автора во время работы и личность которого добавляет красок его страницам. (В художественной литературе, боюсь, таким человеком слишком часто оказывается сам автор.)

Дух-хранитель этой книги, чей взгляд через плечо я, казалось, временами ловил, пока писал, чье легкое покашливание в соседней комнате я иногда слышал в своем воображении и кто неслышно действует за сценой и в математических, и в исторических главах, — это Бернхард Риман. Чтение того, что написано им, и того, что написано о нем, вызвало во мне смешанные чувства по отношению к этому человеку: глубокое сочувствие к его неприспособленности к жизни в обществе, подорванному здоровью, выпавшим на его долю тяжелым утратам и хронической бедности смешано с благоговением перед невероятной мощью его ума и силой его сердца.

Книгу следует посвятить кому-то из живущих, чтобы посвящение могло доставить удовольствие. Я посвятил эту книгу своей жене, которая совершенно точно знает, насколько это посвящение искренне. Но в определенном смысле, и это нельзя обойти молчанием в предисловии, эта книга принадлежит Бернхарду Риману, который за свою короткую жизнь, омраченную многими горестями, оставил людям столь много имеющего непреходящую ценность — включая и задачу, которая продолжает манить их через полторы сотни лет после того, как он с типичной для себя застенчивостью упомянул о своих «недолгих бесплодных попытках» ее решить.


Джон Дербишир

Хантингтон, Лонг-Айленд

Июнь 2002 г.

Часть первая
Теорема о распределении простых чисел
Глава 1. Карточный фокус

I.

Как и многие другие представления, это начинается с колоды карт.

Возьмем обычную колоду из 52 карт; положим ее на стол, подровняв со всех сторон. А теперь сдвинем самую верхнюю карту колоды, не пошевелив при этом ни одну из остальных карт. Насколько можно сдвинуть верхнюю карту, чтобы она еще не упала?

Ответ понятен: на половину длины карты, что мы и видим на рисунке 1.1. Если подвинуть ее так, чтобы на весу оказалось более половины карты, она упадет. Точка опрокидывания находится в центре тяжести карты, т.е. на середине ее длины.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 1.1.

Теперь сделаем кое-что еще. Пусть верхняя карта так и лежит, сдвинутая на половину своей длины — т.е. с максимальным нависанием, — а мы начнем осторожно сдвигать следующую карту. Насколько в сумме могут нависать две верхние карты?

Фокус состоит в том, что эти две карты надо рассматривать как единое целое. Где у этого целого находится центр тяжести? Ясно, что посередине общей длины — длины в полторы карты. Значит, центр тяжести расположен на расстоянии в три четверти длины карты от выступающего края верхней карты (см. рисунок 1.2). Суммарное нависание, следовательно, равно трем четвертям длины карты. Заметим, что верхняя карта по-прежнему свисает со второй на половину своей длины. Но две верхние карты мы сдвигали как единое целое.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 1.2.

Если теперь начать двигать третью карту и посмотреть, насколько можно увеличить нависание, окажется, что ее можно сдвинуть на одну шестую длины карты. Как и ранее, надо воспринимать три верхние карты как единое целое. Центр тяжести тогда расположен на расстоянии в одну шестую длины карты от выдвинутого края третьей карты (см. рисунок 1.3).

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 1.3.

За край у нас выдвинута одна шестая третьей карты, одна шестая плюс одна четверть второй карты, а также одна шестая плюс одна четверть плюс одна вторая верхней карты, что в сумме дает полторы карты:

1/6 + (1/6 + 1/4) + (1/6 + 1/4 + 1/2) = 11/2.

Это половина от длины трех карт; вторая половина находится за точкой опрокидывания. На рисунке 1.4 изображено, что у нас получилось после максимально возможного сдвига третьей карты.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 1.4.

Полное нависание теперь составляет одну вторую (за счет верхней карты) плюс одна четверть (за счет второй карты) плюс одна шестая (за счет третьей). Всего — одиннадцать двенадцатых длины карты. Потрясающе!

Можно ли добиться нависания, превышающего длину одной карты? Да, можно. Прямо следующая карта — четвертая сверху — при осторожном сдвигании добавит к нависанию одну восьмую длины карты. Я не буду проделывать все эти арифметические выкладки — или поверьте мне, или сделайте их сами, подобно тому как мы это только что сделали для трех первых карт. Вот чему равно полное нависание с четырьмя картами: одна вторая плюс одна четверть плюс одна шестая плюс одна восьмая — все вместе одна и одна двадцать четвертая длины карты (см. рисунок 1.5).

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 1.5.

Если продолжать действовать в том же духе и целиком использовать всю колоду, то за счет пятидесяти одной карты накопится нависание, равное

1/2 + 1/4 + 1/6 + 1/8 + 1/10 + 1/12 + 1/14 + 1/16 + … + 1/102

(самую нижнюю карту сдвигать бессмысленно). Такая сумма на самую толику меньше, чем 2,25940659073334. Таким образом, мы добились полного нависания более чем в две с четвертью длины! (Рис. 1.6.)

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.