Как мы видим? Нейробиология зрительного восприятия - Ричард Маслэнд Страница 3
Как мы видим? Нейробиология зрительного восприятия - Ричард Маслэнд читать онлайн бесплатно
И снова очевидно, что мозг делает это не путем сопоставления слов с некими шаблонами. Сколько звуков должны были бы включать такие шаблоны? Сколько словесных форм? Разумеется, гораздо больше, чем в словаре. И это не говоря уже о разных акцентах, темпах речи, фоновом шуме и многом другом…
Эта загадка – способность, которую мы с такой легкостью используем по многу раз на день, – и есть то, что мы называем проблемой распознавания объектов. Хотя ее принято рассматривать в основном как проблему восприятия, здесь также задействована память: чтобы распознать объект, нам нужно сопоставить текущий раздражитель с воспоминаниями о соответствующих объектах, с которыми мы сталкивались в прошлом. Выяснить, как это работает, – захватывающая научная задача, Эверест сенсорной нейробиологии.
Мы изучаем общее
через изучение конкретного.
Как я уже предупредил вас, мир, который мы видим, – вовсе не тот мир, что существует на самом деле. Наша сетчатка анализирует воспринимаемое визуальное изображение, выделяет в нем наиболее значимые компоненты, какие-то из них модифицирует и посылает десятки отдельных потоков сигналов о каждом из них в наш мозг, который собирает из них «видимую» нами картину миру. Все остальное рассматривается как фоновый шум и игнорируется. Такое упрощение сенсорной сигнализации – не просто эволюционная прихоть, а один из наиболее фундаментальных принципов всего восприятия, главная цель которого – экономия.
Чтобы понять, как это работает, давайте начнем с основ.
НЕЙРОН
Нейрон – штука довольно простая. Это крошечный физический объект, состав которого нам понятен. Он включает в себя те же компоненты, которые входят в любую животную клетку, но которые, однако, имеют ряд уникальных особенностей. Когда несколько сотен миллионов нейронов объединяются в сеть, происходят поистине фантастические вещи: мы, владельцы этой нейронной сети, можем узнавать друзей, наслаждаться музыкой Бетховена или ловить мяч одной рукой с расстояния 27 м.
Нейрон, как и все клетки позвоночных, представляет собой мешочек с внутриклеточной жидкостью, отделенный от окружающей среды тонкой эластической мембраной. Одни нейроны похожи на детские воздушные шарики. Форма других более сложна: они походят на амеб. Третьи и вовсе поражают своим причудливым строением. Большинство нейронов напоминают голые деревья зимой с многочисленными ветвями и веточками – с помощью этих отростков они соединяются с другими нейронами, своими ближайшими и дальними соседями. Но при всей замысловатости форм нейрон, как и любая другая клетка, состоит из единого внутреннего пространства, заключенного в границы мембраны – даже если местами эта мембрана напоминает не привычный мыльный пузырь, а тончайшие изогнутые трубочки для напитков.
Что же представляет собой клеточная мембрана? Она состоит из липидов – разновидности жиров, которые, как известно, не смешиваются с водой. Благодаря этому мембрана и выполняет свою барьерную функцию между внутренней и внешней водными средами. Но сама по себе эта липидная оболочка мало что может делать. В лабораторных условиях можно создать искусственную клетку, имеющую одну только клеточную мембрану, но такая клетка будет лежать мертвым грузом. Настоящая клеточная мембрана усеяна мириадами крошечных молекулярных машин, каждая из которых выполняет свою конкретную задачу – например, один из видов встроенных в нее белковых молекул открывает «ворота» (каналы), пропуская внутрь клетки и из нее потоки заряженных частиц (ионов). Этот механизм лежит в основе передачи нервного импульса.
Нервные клетки выполняют множество функций, но главная из них – та, что отличает их практически от всех остальных клеток, – коммуникация с другими нейронами. В большинстве случаев они делают это посредством передачи коротких электрических импульсов, или спайков. Эти импульсы могут передаваться как на короткие, так и на очень длинные расстояния. Некоторые нейроны поддерживают коммуникацию (мы говорим: «Обмениваются нервными импульсами») только со своими ближайшими соседями. Эти так называемые интернейроны (вставочные нейроны или нейроны локальной сети) передают сигналы на расстояние до 10 микрометров, то есть всего до одной сотой миллиметра (1 мкм равен 0,001 мм). Для сравнения: некоторые нервные импульсы проходят путь от головного мозга до нижней части спинного мозга, когда вы пытаетесь пошевелить большим пальцем ноги, или в обратном направлении, если вы больно бьетесь ногой о лежащий на земле камень.
Нервные импульсы передаются через нейроны совсем не так, как электрический ток, текущий по медным проводам. Это гораздо более сложный биологический процесс, и в нем активно участвует клеточная мембрана: передача электрического импульса происходит за счет быстрого колебания мембранного потенциала, которое возникает в результате перемещения потоков ионов внутрь клетки и из нее через встроенные в мембрану специализированные белковые молекулы (ионные каналы). Вот почему передача импульсов происходит довольно медленно по сравнению с течением электрического тока. В зависимости от типа аксона скорость распространения по нему нервного импульса составляет от 10 до 100 м/сек, тогда как электричество бежит по проводам со скоростью около 300 млн м/сек. Такая низкая проводимость ограничивает вычислительную мощность нашего мозга и является основной причиной того, почему он не может использовать для решения проблем простые стратегии перебора, основанные на грубой вычислительной силе.
На конце аксона обычно находится синапс. Это место контакта, через которое нейроны общаются друг с другом. Возникший в синапсе нейрона электрический сигнал преобразуется в химический: под воздействием спайка специальный синаптический механизм выбрасывает в пространство между двумя синапсами (синаптическую щель) особые химические вещества, которые воспринимаются синапсом другого нейрона. Эти химические передатчики сигналов называются нейромедиаторами или трансмиттерами. Поскольку существует очень много разных типов нейромедиаторов, которые используются для разных целей в разных отделах мозга, а также благодаря тому, что механизм их выработки включает множество шагов, мы имеем возможность вмешиваться в этот процесс и в какой-то степени манипулировать функционированием мозга – с терапевтическими целями или ради удовольствия [2]. Например, мы можем воздействовать на синапсы с помощью нейролептиков, противоэпилептических препаратов, валиума, помогающего нам успокоиться, прозака, делающего нас счастливыми, а также хорошо известного всем никотина.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments