История лазера - Марио Бертолотти Страница 26
История лазера - Марио Бертолотти читать онлайн бесплатно
Как мы уже видели, когда возникают совершенно новые идеи, их формулировка часто предопределяется некоторыми новыми концепциями, появляющимися как неполные теории, или теории, в которых такие концепции смешиваются с ошибочными представлениями. В некоторых отношениях модель Бора также предопределялась.
В 1910 г. венский физик Ф.Э. Хаас (1884-1941), аспирант Венского университета, обсуждал модель атома водорода, согласно которой электрон движется по положительно заряженной поверхности сферы радиуса г (поэтому это не модель Резерфорда) и обладает квантованной энергией (это интересная идея).
В ноябре 1911 г. Джон Вильям Николсон (1881 — 1955) в Тринити колледже Кембриджа использовал недавно введенную модель Резерфорда и обнаружил, что спектры атомов являются, существенно, квантовыми явлениями. Он писал: «Фундаментальные физические законы должны быть найдены в квантовой теории излучения, недавно разработанной Планком и другими, согласно которой, изменения энергии в системе периодического вида могут получаться только из некоторых определенных величин, определяемыми частотами системы». Также он установил, что следует предположить применение квантового принципа к атому Резерфорда, т.е. что угловой момент атома может увеличиваться или уменьшаться лишь дискретными квантами. Николсон, однако, не следовал идеи Конвея, что только один электрон может в определенный момент времени испускать излучение, и исследовал колебания большого числа электронов, вращающихся вокруг ядра. Он предполагал, что атом с одним электроном не может существовать и, что простейшие и легчайшие атомы должны быть в ряду корония (гипотетический элемент, который был открыт в солнечной короне) с атомным весом около половины водорода, затем водорода и небулия (гипотетический элемент, который предполагался в некоторых туманностях; сегодня мы знаем, что спектральные линии, приписываемые коронию и небулию, на самом деле принадлежат атомам кислорода и азота в высоких возбужденных состояниях) с 2, 3 и 4 электронами соответственно. Более того, он полагал, что гелий был соединением. Это была нелепость ошибочных идей: гелий — элемент, а короний и нибулий не существуют (спектральные линии, приписываемые корониуму, на самом деле принадлежат обычным металлам, таким как железо и никель, в крайне высоких условиях возбуждения), и нет никаких элементов легче, чем водород.
На следующий год идея квантования углового момента атома снова была исследована голландским химиком Нильсом Бёррумом (1879—1958) и Полем Эренфестом (1880—1933), которые вывели правильные выражения, в которых появилась константа Планка h.
Все эти частные результаты, однако, появились с целью попытаться устранить общее видение всей проблемы и смешивались с совершенно ошибочными рассмотрениями. Бор построил свою модель, стараясь дать объяснение многих существующих изысканий и последующих, даже если он и не мог обосновать свои гипотезы.
Мы можем спросить, как же появилась теория Бора. Резерфорд, которому Бор послал свою рукопись для публикации, представил ее в престижный английский журнал Philosophical Magazine. Это предполагало, что он поддерживает ее, даже несмотря на то, что когда Бор прислал рукопись из Дании, он возражал со своим обычным практицизмом: «откуда электрон знает, на какую орбиту ему перепрыгивать?» Его аргументом был тот факт, что если электрон при переходе испускает фотон, который имеет энергию, равную разности между первоначальным и конечным энергетическим состоянием, он должен знать свое прибытие (конечное состояние), прежде чем фотон будет испущен. На этот вопрос только Эйнштейн смог дать ответ в 1916 г. путем введения законов вероятности. Во всяком случае Резерфорд предложил Бору сократить рукопись, но Бор, хотя он был моложе и менее авторитетнее, чем его учитель, энергично отказался. Другие европейские физики выразили возражения; однако он проявил настойчивость.
Представляя свою модель, Бор не собирался дать окончательное описание атомных систем. Разрыв с классической физикой, который предопределил Бор своей теорией, был так радикален, что для некоторых людей его работа представлялась простым вычислительным фокусом, но ее способность предсказательных соотношений, подтверждаемых экспериментом, делала ее очень привлекательной. Поэтому, хотя она и не вызвала сенсации, она мало-помалу признавалась. Три работы были опубликованы в Philosophical Magazine между летом и осенью 1913 г. Бор прочел информационный курс лекций в Копенгагенском университете, что позволяло ему получить профессорский фант. В течение этого года он совершил несколько поездок в Англию и, в сентябре, обсуждал свою теорию на ежегодном собрании Британской Ассоциации развития науки в Бирмингеме. Это сообщество было организовано в 1831 г. в Йорке как некоторый противовес Королевскому обществу. Тем не менее собрания были интересными, как, например, в 1899 г. в Дувре, где Дж. Дж. Томсон сообщил об открытии электрона.
На собрании в Бирмингеме объявление о новых экспериментальных фактах в поддержку теории Бора улучшило ее прием среди первоначально довольно скептической британской аудитории. Однако немецкие математики в Гёттингене холодно встретили его идеи, поскольку они критиковали употребление Бором математики классической физики в модели, которая бросала вызов классическим взглядам. В июле поездка в Германию помогла Бору получить поддержку и с этой стороны, включая беседу с физиком Максом Борном (1882—1970), который позднее дал ключевое звено в развитии этой теории, путем улучшения матричной механики своим вкладом в интерпретацию квантово механических функций. Борн был награжден Нобелевской премией по физике в 1954 г. (вместе с Вальтером Боте, исследователем космических лучей) «за фундаментальные исследования в квантовой механике, особенно за статистическую интерпретацию волновой функции». На его могиле в Гёттингене выгравировано фундаментальное уравнение матричной механики pq — qp = ih/2π.
Весной 1914 г. Резерфорд предложил Бору должность доцента в Манчестере на 1914—1915 гг., позднее продолженной до 1916 г. В мае 1916 г. он, наконец, был назначен профессором теоретической физики в Копенгагене. Осенью 1916 г. его первый ассистент, голландский физик X.А. Крамерс (1894—1952), который оставался в Копенгагене до 1926 г., присоединился к нему. В 1918 г. Оскар Кляйн (1894—1977) стал его вторым ассистентом. В 1917 г. Бор занялся постройкой нового Института теоретической физики, но потребовалось четыре года, прежде чем открылись его двери (8 марта 1921 г.). Через эти двери прошел ряд блестящих ученых как студентов, так и профессоров, учителей и гостей.
Работы Бора по строению атома дали старт активности во многих научных центрах, и сам Бор участвовал в дальнейшем процессе. Очень важной концепцией, которую он разработал для понимания квантовых проблем и которую никто лучше, чем он, не знал, как использовать, была «копенгагенская интерпретация», которая связывала предсказания классической теории с квантовой теорией. Так как квантовая формула Планка для длинных длин волн хорошо аппроксимировалась классической формулой Рэлея, то Бор утверждал, что частота обращения электрона по орбите, вычисленная с учетом квантовой механики, будет при очень больших орбитах приближаться к формулам, даваемых классическими законами. Это позволило ему найти правила, названные правилами отбора, которые устанавливали, что происходят не все переходы. Эти правила устанавливают, между какими орбитами разрешены переходы. Тем самым устанавливается первый критерий, позволяющий предсказать, какие частоты могут быть излучены (среди многих, соответствующих различным скачкам энергии). Эти правила также способствовали предсказаниям того, какова интенсивность света, соответствующая каждому возможному переходу.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments