ДНК. История генетической революции - Джеймс Д. Уотсон Страница 23
ДНК. История генетической революции - Джеймс Д. Уотсон читать онлайн бесплатно
Вскоре Замечник и его коллега Малон Хогланд сделали еще более неожиданное открытие: оказалось, что аминокислоты перед встраиванием в полипептидные цепочки связываются с мелкими молекулами РНК. Результат их озадачивал, пока я не рассказал им об адапторной теории Крика. Впоследствии они подтвердили версию Крика о существовании специальных малых адапторных РНК и специальных ферментов, ковалентно присоединяющих аминокислотные остатки к этим РНК. Согласно гипотезе Крика, каждой аминокислоте соответствует свой вид адапторной РНК и свой фермент, присоединяющий только данную аминокислоту к данному адаптеру. С другой стороны, адапторная РНК имеет нуклеотидный триплет (впоследствии названный антикодоном), комплементарный соответствующему кодону матричной РНК. Таким образом, узнавание кодона аминокислотой не является непосредственным, а осуществляется через систему «адапторная РНК – фермент». Специфический фермент узнает одновременно аминокислоту и определенную адапторную молекулу, так что они оказываются соединенными, в свою очередь, адаптер (с навешенной аминокислотой) узнает определенный кодон матричной РНК, так что присоединенная аминокислота становится приписанной именно данному кодону.
До открытия транспортной РНК считалось, что вся клеточная РНК служит матрицей для ДНК, но, несмотря на значительные различия нуклеотидного состава ДНК, размер и нуклеотидный состав РНК в рибосомах различных бактерий оказались весьма близкими. Кроме того, к этому времени стало ясно, что перенос информации осуществляется при помощи относительно нестабильной, короткоживущей формы РНК, тогда как рибосомная РНК оказалась очень стабильной. Эксперименты, проводившиеся в Институте Пастера в Париже, позволяли предположить, что большинство матриц для сборки бактериальных белков на самом деле недолговечны. Тем более странным оказалось то, что последовательности оснований в двух цепочках рибосомальной РНК никак не соответствовали последовательностям оснований на соответствующих участках хромосомной ДНК.
Разобраться с этими парадоксами удалось в 1960-е годы, когда была открыта третья форма РНК – матричная. Оказалось, что она и есть настоящий шаблон для сборки белков. Эксперименты, проведенные в моей гарвардской лаборатории, а также выполненные в Кембридже и Калифорнийском технологическом институте Мэттом Мезельсоном, Франсуа Жакобом и Сиднеем Бреннером, показали, что рибосомы – это, в сущности, молекулярные фабрики. Матричная РНК напоминает перфокарту из компьютера первого поколения и является программой для синтеза белка. Эта РНК переносится из ядра в цитоплазму клетки, где она связывается с рибосомами, настоящими молекулярными «машинами» для синтеза белка. Белок синтезируется из активированных аминокислот, присоединенных к особым транспортным РНК, причем каждая из аминокислот присоединена к своей специфической транспортной РНК, благодаря которой аминокислота фиксируется в каталитическом центре рибосомы, где она «пришивается» к синтезируемой белковой цепи таким образом, что аминокислоты сначала выстраиваются в правильном порядке, а уже затем химически связываются в полипептидные цепочки.
К тому моменту генетический код еще не был расшифрован, оставались вопросы механизмов, по которым последовательность нуклеиновых кислот транслируется в упорядоченную полипептидную цепочку. В 1956 году Сидней Бреннер изложил соответствующие теоретические проблемы в рукописи «Клуб галстуков РНК». В сущности, они сводились к следующему: как можно закодировать, какая именно из двадцати аминокислот должна быть установлена на конкретном участке белковой цепочки, если алфавит ДНК состоит всего из четырех «букв» – А, Т, Г и Ц? Разумеется, отдельно взятого нуклеотида, который мог бы иметь одну из четырех ипостасей, и даже двух нуклеотидов было бы недостаточно. В таком случае просто не мог бы работать механизм, допускающий 16 вариантов преобразований (4 × 4). Чтобы закодировать отдельно взятую аминокислоту, требуется минимум три нуклеотида (триплет). Но триплет обеспечивает поразительную избыточность – допускает 64 варианта преобразований. Поскольку код требует всего 20 аминокислотных остатков, означает ли это, что большинство аминокислот можно закодировать несколькими вариантами триплетов? Если так, то совершенно реалистичным мог бы оказаться и «квадруплетный» код (4 × 4 × 4 × 4), допускающий 256 преобразований и подразумевающий еще более значительную избыточность.
В 1961 году Крик и Бреннер поставили в Кембридже решающий эксперимент, показавший, что в основе генетического кода лежат именно триплеты. Искусно применив вещества с мутагенным действием, они научились встраивать в ДНК или удалять из нее пары оснований. Они обнаружили, что, когда они встраивали или удаляли единственную пару оснований, происходил патологический «сдвиг рамки» и искажался весь код, следующий за точкой мутации. Представьте себе код из трехбуквенных слов, например: JIM ATE THE FAT CAT (Джим съел жирного кота). Допустим, мы удалим первую букву «T». Если мы хотим сохранить в предложении аналогичную структуру из трехбуквенных слов, то получим: JIM AET HEF ATC AT – после удаления первой «T» начинается непроизносимая игра букв. То же самое происходит, если вставляются или удаляются две пары оснований. Удалив первую «T» и первую «E», получим: JIM ATH EFA TCA T – еще более неразборчивое сочетание букв. Что же произойдет, если мы удалим (или вставим) три буквы? Удалив первые «A», «T» и «E», мы тем не менее сохраняем в осмысленном виде остальные слова во фразе. Даже если операция удаления накрывает несколько слов – скажем, мы удаляем первую «T», первую «E» и вторую «T» – мы все равно теряем всего два слова и вполне можем восстановить скрывающееся за ними предложение: JIM AHE FAT CAT. Аналогичная ситуация прослеживается и в ДНК: однократное удаление или встраивание вносит хаос во всю структуру белка, что связано с эффектом сдвига рамки считывания и появления мутации в последовательности ДНК, для которой характерна вставка или делеция нуклеотидов, в количестве, не кратном трем. В связи с триплетным характером генетического кода вставка или делеция числа нуклеотидов, не кратных трем, приводит к сильному искажению информации в транскрибируемой мРНК. Также в результате может появиться стоп-кодон, что приводит к преждевременной терминации синтеза белка. При вставке или удалении триплета в молекуле ДНК мы далеко не обязательно получим катастрофический эффект: если при этом добавится или удалится всего одна аминокислота, то белок вполне может остаться функциональным с биологической точки зрения. (Исключение – муковисцидоз. Ниже мы убедимся, что удаление единственной аминокислоты в белке муковисцидоза – это наиболее распространенная мутация, связанная с данной болезнью.)
Как-то раз Крик и его коллега Лесли Барнетт поздно вечером пришли в лабораторию, чтобы проверить результат опыта с удалением триплета.
Крик сразу осознал всю важность этого эксперимента и сказал Барнетту: «Лишь мы с тобой знаем код триплетов!» В компании со мной Крик впервые познал секрет жизни, свернутый в двойную спираль; теперь он одним из первых узнал, что этот секрет записан словами из трех букв.
Итак, выяснилось, что код записывается триплетами-тройками, а РНК опосредует связь между ДНК и белком. Тем не менее код по-прежнему оставался не взломан. Какая пара аминокислот зашифрована в отрезке ДНК, который кодируется, скажем, последовательностью АТА ТАТ или ГГТ ЦАТ? Первый намек на решение этой загадки прозвучал в лекции Маршалла Ниренберга на Международном биохимическом конгрессе, состоявшемся в Москве в 1961 году.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments