Нанонауки. Невидимая революция - Лоранс Плевер Страница 23
Нанонауки. Невидимая революция - Лоранс Плевер читать онлайн бесплатно
Сама молекула длиной менее 1,5 нм — из ряда самых сложных на сегодня молекул-приборов, а ее химический синтез занял несколько лет. Работоспособна она только на металлической поверхности: когда крошечное химическое соединение на свободном конце коромысла приближается к поверхности, то электронное состояние какого-то участка соединения меняется, и это вызывает модуляцию электронной плотности в коромысле, что обнаруживается и на поверхности, даже на немного большем удалении от того участка, который находится непосредственно под концом коромысла.
Выходит, мало сказать, что молекула — это лаборатория, в которой ставится эксперимент: на самом деле опыт производится с атомами, с группами атомов, находящимися на некоторой поверхности. Число этих атомов можно увеличить, но если оно и возрастет, то не намного превысит то количество, которое требуется для создания экспериментальной установки. Так, Дон Эйглер поставил эксперимент с атомным магнетизмом внутри эллиптической ограды, построенной на поверхности медного кристалла из 36 атомов кобальта: игла туннельного микроскопа передвигала по этой поверхности атом за атомом, пока не возник замкнутый овал. Атомы кобальта были выбраны на роль штакетин в заборе, потому что они отражают квантовые волны, возникающие из-за беспорядочного передвижения несвязанных электронов, блуждающих по медной поверхности. Длина такой волны 1,5 нм, и это удобно для наблюдения волновой интерференции внутри загородки размером в несколько нанометров, огражденной атомами кобальта. И Дон Эйглер получил изображения этой интерференции электронных волн на своем туннельном микроскопе — вроде кругов, расходящихся по воде: концентрические окружности разного диаметра. Картинки победоносно облетели всю планету. Еще бы — более чем убедительное доказательство волнового характера тех состояний, в которых пребывают электроны на поверхности металла. А потом Дон Эйглер слегка изменил условия опыта, поместив, с помощью той же иглы микроскопа, в фокус эллипса намагниченный атом. И обнаружил магнитное эхо… в другом фокусе, где никакого атома не было. Налицо магнитный мираж — это эффектное явление возникает благодаря переносу магнетизма из одного фокуса эллипса в другой через электронное облако, висящее над металлической поверхностью. Разумеется, подобное явление можно воспроизвести в любых масштабах и с любыми длинами волн, хоть световых, хоть звуковых. Достаточно подобрать эллиптический резонатор подходящего размера: желательно, чтобы величина резонатора была соизмерима с длинами интерферирующих волн (и чтобы вдоль резонатора укладывалось целое число четвертей волны).
МЕХАНИЧЕСКИЕ МОЛЕКУЛЫ-МАШИНЫ
Обратимся теперь к механике. Чтобы молекула смогла стать механической установкой, ее следует оснастить всеми деталями, необходимыми для выполнения стоящих перед нею задач. Это означает, что такие молекулы будут сложнее тех, что уже описаны нами, потому что понадобятся различные механические узлы (и для их закрепления сильные химические связи). В 2001 году мы придумали молекулу-тележку с ручкой и назвали ее «молекулярной тачкой». Длина этого агрегата — 1,2 нм. У нее спереди два молекулярных колеса диаметром 0,7 нм, и крепятся они, как положено, на оси; сзади же — ножки, такие же, как у макроскопической тачки. И наконец, два рукава сзади — вместо рукояток. Вот что удается смастерить с помощью всего лишь одной иглы туннельного микроскопа. Первым такую тележку соорудил Гвеналь Рапенн в CEMES в Тулузе, потом Леонгард Гриль и Франческа Мореско из Берлинского университета, начавшие «предпусковые и пусковые испытания», по ходу которых испытывались качества тележек. Предвыпускная фаза состояла в выпаривании молекул — чаще всего это выглядело как прокаливание порошка в небольшом тигле. Тигель обычно разогревали до 150–250 °C, размещая его так, чтобы часть молекул попадала на поверхность. Но чтобы прокаливать молекулы побольше и получать молекулярные тачки, нужны температуры порядка 350–450 °C. В таких условиях, однако, 95 % молекул-тележек ломается или на выходе из тигля, или уже на поверхности. А из тех молекул, которые все-таки целыми добираются до поверхности, есть такие, которые выглядят тележками с двумя, тремя, а то и четырьмя колесами. Многие, хоть и целы, но все равно не годятся, из-за слишком короткой оси, например. Словом, все это — сломанные или полуразобранные «тачки», с теми или иными дефектами. А поскольку эти осколки и обломки тележек оставляют тигель сильно раскаленным, то, попадая на поверхность, они не только образуют беспорядочные нагромождения атомов, но и взаимодействуют между собой, в том числе химически, в результате чего возникают все новые и новые — и совсем малые — молекулы.
К счастью, довольно много тележек все-таки благополучно добирается до поверхности. И мы попробовали подтолкнуть одну такую тачку сзади — иголкой туннельного микроскопа. Надеялись, что колеса станут вращаться, а тележка продвинется вперед. Куда там! После нескольких попыток — мы очень старались, чтобы ножки были наклонены и не мешали движению — стало ясно, что передние колеса никак не хотят поворачиваться. Потом, но много позже, мы поняли, что, наверное, колеса слишком сильно сцепляются с металлической поверхностью. Эта неудача — красноречивое свидетельство трудностей, с которыми сопряжены попытки воспроизвести в «мире внизу» строение машин, работающих в нашем макроскопическом мире, то есть строить механические молекулы-машины такими же, как известные нам механизмы, только в наномасштабе, очень непросто.
Тем временем профессор химии в Университете Райса в Техасе Джеймс Тур занялся изучением молекулы-коляски. Он синтезировал нанокарету — молекулу длиной 1,5 нм. И снабдил экипаж четырьмя колесами — каждое колесо представляло собой молекулу фуллерена. Колесико крутилось на молекулярной оси — такой же, что у молекулярных тачек. И карета двигалась! Можно было ее подтолкнуть иглой туннельного микроскопа, но, оказалось, что есть способ куда проще: профессор нагревал золотую поверхность, на которой стояла молекулярная карета: тепловой энергии вполне хватало для самопроизвольного перемещения кареты. Выглядело это так, что карета беспорядочно передвигается по поверхности — в общем, слоняется, как попало. Хорошо, конечно, что хоть как-то движется, но вот колеса-то у нее не крутятся! О вращении колес можно судить по силе тока, протекающего через иглу туннельного микроскопа: если внутренняя структура молекулы меняется, то будет меняться и ток, и по характеру этих изменений видно, крутятся колеса или же тепло просто тащит карету невесть куда, а колеса так и остаются неподвижными. Просто скользят по поверхности — наверное, для фуллереновых колес золотая гладь оказалась слишком скользкой.
Трудности трудностями, но, как известно, прогресс неудержим, и потому можно не сомневаться: рано или поздно, но наноколеса наноэкипажей завертятся. И наверняка сразу же на повестку дня встанут другие требования: большей автономности молекулярных повозок, например. В смысле: а давайте поставим на тележку двигатель. Джеймс Тур уже поставил на свою молекулу-карету маленькую защелку — посередине рамы. Если на эту защелку попадет луч света, она опустится на поверхность и станет опорой, отталкиваясь от которой карете будет легче начать движение. Пока что эта молекула не совсем готова — работы над ее синтезированием продолжаются. А в лаборатории в Тулузе Гвеналь Рапенн и Жан-Пьер Лоне придумали и синтезировали молекулу-моторчик — диаметр ротора этого двигателя меньше 2 нм. Теперь они рассчитывают мощность своего движка и придумывают для него коробку передач — чтобы можно было встроить его в молекулу-карету.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments