Идиот или гений? Как работает и на что способен искусственный интеллект - Мелани Митчелл Страница 15
Идиот или гений? Как работает и на что способен искусственный интеллект - Мелани Митчелл читать онлайн бесплатно
В научных кругах самую знаменитую версию этого аргумента предложил философ Джон Сёрл. В 1980 году Сёрл опубликовал статью “Разум, мозг и программы” [60], в которой заявил о своем категорическом несогласии с тем, что машины могут “мыслить по-настоящему”. В этой популярной и неоднозначной статье Сёрл ввел концепции “сильного” и “слабого” искусственного интеллекта, чтобы провести черту между двумя философскими утверждениями о программах ИИ. Хотя сегодня люди в основном называют сильным “ИИ, способный выполнять большинство задач на человеческом уровне”, а слабым – уже существующий ограниченный ИИ, Сёрл использовал эти термины иначе. В представлении Сёрла, ИИ можно назвать сильным, если “должным образом запрограммированный цифровой компьютер не просто моделирует разум, а в буквальном смысле обладает разумом” [61]. Примерами слабого ИИ Сёрл, напротив, считал компьютеры, которые используются для моделирования человеческого разума, но не обладают разумом “в буквальном смысле” [62]. И здесь мы возвращаемся к философскому вопросу, который я обсуждала с мамой: есть ли разница между “моделированием разума” и “обладанием разумом в буквальном смысле”? Как и моя мама, Сёрл полагает, что эта разница принципиальна, и заявил, что сильный ИИ невозможен даже в теории [63].
Статью Сёрла отчасти вдохновила опубликованная в 1950 году статья Алана Тьюринга “Вычислительные машины и разум”, в которой Тьюринг предложил способ разрубить гордиев узел “моделированного” и “настоящего” разума. Заявив, что “исходный вопрос «Может ли машина мыслить?» лишен смысла, а потому не заслуживает обсуждения”, Тьюринг предложил практический метод, чтобы наделить его смыслом. В его “имитационной игре”, ныне называемой тестом Тьюринга, два участника: компьютер и человек. Каждому из них по отдельности задает вопросы человек-судья, который пытается определить, кто есть кто. Судья физически не взаимодействует с участниками игры, а потому не может опираться на визуальные и слуховые подсказки. Все общение происходит при помощи печатного текста.
Тьюринг предложил следующее: “Вопрос «Могут ли машины мыслить?» нужно заменить вопросом «Можно ли вообразить такой цифровой компьютер, который сможет выиграть в имитационной игре?»” Иными словами, если компьютер достаточно похож на человека, чтобы быть неотличимым от людей, когда в расчет не принимаются его внешний вид и голос (а если уж на то пошло, то не учитывается также, как он пахнет и какой он на ощупь), то почему бы нам не считать, что он мыслит по-настоящему? Почему мы готовы признать “мыслящей” лишь такую сущность, которая состоит из конкретного материала (например, биологических клеток)? Как отметил без лишних церемоний информатик Скотт Ааронсон, предложение Тьюринга стало “выпадом против мясного шовинизма” [64].
Но дьявол всегда в деталях, и тест Тьюринга не исключение. Тьюринг не обозначил критерии для выбора участника-человека и судьи, а также не определил, как долго должен продолжаться тест и на какие темы позволено говорить участникам. При этом он сделал удивительно специфический прогноз: “Полагаю, лет через пятьдесят появится возможность программировать компьютеры таким образом… что они станут справляться с имитационной игрой настолько успешно, что вероятность верной идентификации после пяти минут расспросов для среднего судьи не будет превышать 70 %”. Иными словами, за пять минут игры среднего судью будут обманывать в 30 % случаев.
Прогноз Тьюринга оказался довольно точным. За прошедшие годы проводилось несколько тестов Тьюринга, в которых роль компьютера выполняли чат-боты – программы, созданные специально для поддержания разговора (больше они ничего не умеют). В 2014 году в Лондонском королевском обществе состоялся тест Тьюринга с участием пяти компьютерных программ, тридцати участников-людей и тридцати судей разных возрастов и профессий, включая специалистов и неспециалистов по компьютерным технологиям, а также носителей английского языка и людей, для которых он был неродным. Каждый судья проводил несколько пятиминутных разговоров, в которых параллельно общался (печатая текст) с двумя участниками – человеком и машиной, – а затем должен был определить, кто есть кто. Чат-бот Женя Густман, созданный группой российских и украинских программистов, выиграл соревнование, обманув десять (или 33,3 %) судей. Организаторы соревнования, следуя критерию Тьюринга об “обмане более 30 % судей за пять минут”, наводнили прессу сообщениями о том, что тест Тьюринга наконец-то оказался пройден.
Чат-бот Женя Густман работает аналогично большинству других чат-ботов. Он хранит большой набор шаблонов фраз, которые заполняет на основе запрограммированных правил, применяющихся к входному тексту – реплике собеседника. Создатели чат-бота разработали для него лингвистические правила, которые позволяют ему выделять ключевую информацию из входного сигнала и сохранять ее для последующего использования. Кроме того, чат-бот хранит базу данных “здравого смысла”, созданную людьми, а также некоторые логические правила, которые, вероятно, позволяют ему отвечать на такие вопросы, как “Какого цвета небо во Владивостоке?”, вполне по-человечески, например: “Синее, наверное, если нет облаков”. Если ни одно из правил чат-бота неприменимо к входному сигналу, он просто меняет тему. Правила системы также определяют ее “личность” – в данном случае это тринадцатилетний украинский мальчик, который хорошо, но не идеально (что особенно удобно) владеет английским. Вот отрывок из беседы Жени Густмана с одним из судей, которого он обманул:
Судья: Какого ты пола
Женя: Раз уж вы спрашиваете, я мальчик. Кстати, даже не урод!
Судья: что ты знаешь в данный момент
Женя: Я предпочел бы об этом не говорить, если вы не возражаете. Можете сказать мне, кто вы? Я имею в виду, по профессии.
Судья: сколько тебе лет
Женя: Я мальчик 13 лет.
Судья: что ты умеешь
Женя: Что я умею? Я вам этого не скажу. О-ох. Еще вопросы есть? [65]
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments