Солнечная система - Владимир Сурдин Страница 11

Книгу Солнечная система - Владимир Сурдин читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Солнечная система - Владимир Сурдин читать онлайн бесплатно

Солнечная система - Владимир Сурдин - читать книгу онлайн бесплатно, автор Владимир Сурдин

Вокруг каждой из точек L1—L5 существуют и «настоящие» периодические орбиты. Траектории вокруг лежащей дальше Луны точки L2, похожие на овал в плоскости, перпендикулярной прямой Земля-Луна, получили особое наименование гало-орбит. В будущем они сыграют важную роль в освоении Луны. На гало-орбитах разместятся спутники-ретрансляторы, позволяющие поддерживать радиосвязь между Землей и базой, расположенной на обратной стороне Луны.

На рис.11 изображена более замысловатая периодическая орбита, показывающая их богатое разнообразие. КА на такой орбите попеременно является то спутником Земли, то спутником Луны.


Солнечная система

Рис.11

Задача о движении КА в гравитационном поле Земли и Солнца математически тождественна задаче о движении в поле Земли и Луны. Тут тоже существуют периодические орбиты и точки либрации. Более того, они уже используются на практике. Космический аппарат SOHO для исследования процессов на Солнце находится все время на гало-орбите вблизи точки L1.

Решения задачи о движении объекта в окрестности двух массивных тел оказывается очень полезным, и не только в приложении к Солнечной системе: они используются и при изучении движения вещества в двойных звездных системах, и в звездных скоплениях, и в системах галактик. Но нужно помнить, что все эти полезные решения получены при определенных предположениях. Например, точки Лагранжа существуют в рамках ограниченной задачи: два тела имеют конечные массы (любые; обе массы могут быть даже равны друг другу), а третья бесконечно мала (у нас это космический аппарат). Движение в окрестности коллинеарных точек либрации L1, L2, L3 всегда неустойчиво. Устойчивость движения в окрестности треугольных точек Лагранжа L4, L5 зависит от соотношения между массами основных тел. Обозначим массы основных тел через m1≥m2. Введем безразмерный параметр µ, выражающий отношение этих масс:

µ=m2/(m1+m2)

А.М. Ляпунов доказал, что движение в окрестности треугольных точек либрации устойчиво в первом приближении при 27µ(1—µ)<1, что равносильно условию

µ<µ0=0,0385209.

Для системы Земля-Луна µ<(1/3)/µ0, значит, треугольные точки либрации устойчивы (при отсутствии не учтенных в задаче возмущений!). А вот для системы Плутон-Харон µ>3,7µ0. Устойчивости нет. В системах двойных звезд, как правило, µ>µ0 и движение неустойчиво.

Импульсные перелеты

Итак, у нас в запасе внушительный набор орбит, по которым можно двигаться долго-долго, не затрачивая ни малейших усилий. Но как попасть туда? Будем считать, что мы уже вышли в космос на круговую орбиту искусственного спутника Земли. А теперь нам надо перейти на более высокую орбиту. Тоже круговую и лежащую в той же плоскости. Имея супер-ракету, можно перелететь с орбиты на орбиту множеством способов. Но современные ракеты пока не позволяют развивать скорости в сотни километров в секунду, так что не все способы реализуемы. А поскольку каждый лишний грамм груза на борту — все равно что кирпич в рюкзаке у туриста, из возможных способов следует выбрать оптимальный, т.е. требующий минимального количества топлива.

Реактивные двигатели работают без перерыва несколько минут, тогда как перелеты длятся часы, а межпланетные — месяцы и годы. Так что можно считать без большой ошибки, что космический корабль практически мгновенно получает добавку скорости (как говорят, к аппарату прикладывается импульс скорости). Чтобы уйти с орбиты старта, нужен по крайней мере один импульс υ1. Чтобы остаться на орбите финиша — еще один υ2. Так называемая характеристическая скорость υ12, а с ней и расход топлива, будут минимальными, если импульсы прикладывать по касательным (рис.12). Это было доказано еще в 1920-е гг. В. Гоманом в Германии и Ф.А. Цандером у нас.


Солнечная система

Рис.12

В космосе все движения обратимы. Точнее, если все скорости всех тел изменить на противоположные, то они будут двигаться по тем же орбитам, но в противоположную сторону. В частности, если все стрелки на рис.12 перевернуть, то получим тоже допустимые движения. Это значит, что оптимальный перелет с высокой на низкую орбиту — тот же эллипс Гомана-Цандера с теми же импульсами υ2 и υ1, но на этот раз не разгонными, а тормозными, в результате чего в дальнейшем можно ограничиться перелетами на более высокие орбиты.

Отнюдь не всегда начальная и конечная орбиты лежат в одной плоскости. Существенное изменение плоскости орбиты — задача, непосильная для современных ракет (опять космический парадокс: автомобилю трудно забираться на гору, но ничего не стоит свернуть направо). Действительно, чтобы повернуть плоскость орбиты на 60°, по правилу векторного сложения скоростей требуется импульс, равный скорости движения КА, т.е. 8 км/с для низких спутников Земли.

Но задача о стыковке двух ИСЗ решается и для совсем разных орбитальных плоскостей, лишь бы совпадали их наклоны к экватору. Действительно, плоскости орбит близкого и далекого ИСЗ из-за влияния сжатия Земли вращаются вокруг полярной оси и притом с разными угловыми скоростями. Достаточно выждать неделю-другую, пока плоскости орбит не совпадут, тогда и надо включать двигатели по описанной схеме.

Вернемся к задаче перелета между компланарными круговыми орбитами. А что, если не ограничиваться двумя импульсами? Как показал в тридцатых годах А.А. Штернфельд (родившийся в Польше, работавший сначала во Франции, затем в СССР), решение в этом случае зависит от отношения ρ радиусов внешней и внутренней окружностей. Если 1<ρ≤11,9, то полуэллипс остается оптимальной траекторией. Если ρ≥15,6, то более экономичен трехимпульсный перелет, осуществляемый по схеме типа Петербург-Одесса через Владивосток (рис.13). В точке А1 дается разгонный импульс υ1, больший, чем нужно для выхода на эллипс Гомана-Цандера, но меньший, чем нужно для ухода на бесконечность. В результате получим полуэллипс А1А2, заходящий за орбиту цели. В его апоцентре А2 снова прикладывается разгонный импульс υ2, обеспечивающий полет по полуэллипсу А2А3, касательному к орбите цели. В точке А3 дается уже тормозной импульс υ3, переводящий космический аппарат на круговую орбиту. И что удивительно: чем дальше расположена точка тем меньше характеристическая скорость υ123. А оптимального перелета нет! Он существует лишь как некая абстракция: надо уйти в «бесконечность», приложить там «нулевой» импульс и вернуться в точку А3.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.