Математика на ходу - Майк Эскью Страница 8
Математика на ходу - Майк Эскью читать онлайн бесплатно
Какое самое длинное имя можно было бы себе купить за один фунт?
Если не получается угадать, имя можно выдумать.
Вариация на тему классической забавы «Угадай, сколько конфет в банке?»
Вам понадобится банка, наполненная сухими сыпучими продуктами (подойдут фасоль или изюм).
Способствует осознанному восприятию чисел и умению мыслить большими величинами.
Это отличный способ занять ребенка, когда вы что-то готовите на кухне.
Требуется угадать, сколько в банке фасолин.
Предварительно стоит вместе поразмышлять о том, чем, кроме простого пересчета, можно проверить правильность ответа, например:
• посчитать, сколько фасолин помещается в крышку банки, а потом сосчитать количество мерок;
• разложить фасолины в один слой на поверхности конверта, а потом, соизмерив это количество с остатком в банке, посчитать, сколько таких конвертов получится выложить ее содержимым;
• взвесить содержимое одной мерной ложки, наполненной фасолью. Сколько таких ложек в банке?
Теперь можете предоставить ребенка самому себе, и пусть считает на здоровье.
Складываем бумажного змея или пятиугольник
Вам понадобится лист бумаги формата А4.
Способствует развитию геометрического мышления.
Простой лист бумаги формата А4 может стать источником разнообразных математических забав и фокусов.
Для начала попробуем сложить бумажного змея:
шаг первый: загните нижний левый угол вправо и совместите боковые края листа, как показано на рисунке;
шаг второй: загните верхний левый угол вправо и вниз, до совмещения верхней точки с противоположной стороной листа, как показано на рисунке;
шаг третий: загните правый верхний угол влево и переверните лист, как показано на рисунке. Если вы все делали аккуратно, у вас должен получиться идеально симметричный ромб.
Учтите, что бумажный змей с помощью трех сгибов получается только из листа А4, потому что тут фокус в соотношении длин сторон. Отношение длинной стороны (297 мм) к короткой (270 мм) составляет 1,414, что практически равно корню квадратному из 2. Отсюда 1,414 × 1,414 = 2 или, по крайней мере, к этому стремится.
Есть еще одна интересная фигура, которую можно сложить из листа бумаги. Для этого аккуратно оторвите полоску 2 сантиметра шириной и завяжите ее обычным узлом, который потом бережно прижмите и разгладьте. У вас в руках окажется правильный пятиугольник. Чтобы форма была более очевидной, загните или оторвите оставшиеся по краям концы.
Сколько на самом деле длится минута?
Вам понадобятся часы с секундной стрелкой либо секундомер или таймер в вашем мобильном телефоне.
Способствует развитию счетных навыков и чувства времени.
По очереди пытаемся угадать, сколько длится минута.
У одного из играющих в руках таймер, он говорит: «Время пошло!»
Другой, когда, по его мнению, минута истекла, говорит: «Стоп!»
Кто из вас точнее угадает, сколько именно длится минута?
А что будет, если вы потренируетесь? Есть улучшения?
(Старая, проверенная временем подсказка: попробуйте посчитать попугаев. За десять секунд вы успеете мысленно произнести: «Раз попугай, два попугай, три попугай» и так до десятого попугая. Попробуйте, вдруг поможет? Точность зависит от того, с какой скоростью вы произносите слово «попугай».)
Просчитывать различные варианты может быть очень весело
Способствует развитию счетных навыков и представления о комбинаторике.
Утренний распорядок вашего ребенка, скорее всего, выглядит так:
1. проснуться;
2. встать с кровати;
3. сходить в туалет;
4. снять пижаму;
5. одеться;
6. позавтракать;
7. взять ранец;
8. пойти в школу.
А теперь представим себе, что привычная последовательность действий нарушена. Что получится, если вместо первого пункта, «проснуться», начать день с восьмого, «пойти в школу»?
А какой порядок действий будет самым нелепым?
Как вам такой вариант:
1. взять ранец;
2. одеться;
3. пойти в школу;
4. сходить в туалет;
5. позавтракать;
6. снять пижаму;
7. встать с кровати;
8. проснуться.
Сколько всего возможно комбинаций из предложенных 8 элементов?
(Ответ: очень много. Есть восемь действий, каждое из которых можно совершить в первую очередь, семь, которые можно совершить во вторую, шесть – в третью и т. д. Общее количество вариантов высчитывается следующим образом: 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40 320. Но сколько из просчитанных комбинаций действительно можно претворить в жизнь?)
Какую сумму можно заплатить без сдачи?
Способствует формированию навыков счета и представлений о денежных единицах.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments