Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира Страница 39

Книгу Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира читать онлайн бесплатно

Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира - читать книгу онлайн бесплатно, автор Хаим Шапира

– В этом нет никакой проблемы, даже наоборот. Числу 1 достанется множество номеров, и оно выберет, в каком из них жить, – ответил профессор.

Теперь мы подходим к третьему простому числу, которое равно 5. Значит, числу 1/3 достанется номер 5. – Именно в этот момент администратор поняла, почему простые числа непременно нужно возводить в степени: дело в том, что номер 4 уже занят числом 2.

– 2/3 поселится в номере 5², – продолжал профессор, – дроби 3/3 будет выделен номер 5³… вы ведь уже поняли логику моего метода. Затем мы переходим к 7, четвертому простому числу. Идея остается той же. 1/4 получает номер 7, 2/4 – номер 7², 3/4 сможет вселиться в номер 7³ и так далее и так далее – снова и снова и снова. Эта схема расселения очень интересна, – добавил профессор. – Хотя имеется бесконечное число бесконечных групп постояльцев, и каждая из этих групп сама по себе способна целиком заполнить гостиницу, мы сумели разместить всех их. Причем… у нас по-прежнему остается бесконечное количество свободных номеров!

– Что?! – Администратор гостиницы не поверила своим ушам.

– Все номера, не соответствующие простым числам или степеням простых чисел, – например 1, 6, 10, 12, 14, 15, 18… – остаются совершенно пустыми.

Администратор, лишь мгновением раньше бывшая в восторге от того блестящего метода, который предложил для решения проблемы расселения профессор, снова впала в полнейшее отчаяние. Перед ней снова возникла проблема уровня заполненности гостиницы. Хороший администратор гостиницы просто не может позволить себе иметь бесконечно много (!) незанятых номеров. Что подумают хозяева гостиницы?

– Послушайте, – сказала Омега профессору, – одни только натуральные числа могут заполнить всю гостиницу, и так оно раньше и было. А теперь вы предлагаете какую-то безумную схему, по которой натуральные числа вместе с бесконечным количеством других бесконечных множеств, каждое из которых тоже могло бы заселить всю гостиницу, создают мне уровень заполненности гораздо ниже 100 процентов. По-моему, в этом нет никакой логики. Я, конечно, не специалист, но нет ли какого-нибудь способа, который позволил бы мне отчитаться начальству о значительно более высокой заполненности гостиницы?

– Что же, я думал, что решение будет гораздо более эффектным, если останется бесконечное число незанятых номеров. Но если вас интересует только уровень заполненности, я могу предложить другой вариант, в котором все номера будут заполнены на 100 процентов.

– Пожалуйста, расскажите мне о нем! – взмолилась Омега.

– Прежде чем я объясню это решение, нам нужно провести небольшую подготовку. Поставим в соответствие каждому рациональному числу пару чисел. Первым из них будет его числитель, а вторым – знаменатель. Например, числу 3/4 будет соответствовать пара чисел (3, 4). Каждое натуральное число n мы будем записывать в виде дроби n/1; тогда ему будет соответствовать пара (n, 1). Например, числу 7 соответствует пара (7, 1). Теперь расположим все эти числа следующим образом:


Восемь этюдов о бесконечности. Математическое приключение

Отмечу для любителей алгебры, что в общем случае мы выделяем числу n/m номер n² – m + 1, если n ≥ m, и номер (m – 1)² + n, если n < m.

Например, у числа 3/2 числитель больше знаменателя; следовательно, ему должен быть предоставлен номер 3² – 2 + 1, то есть номер 8. Можете убедиться сами: если начать с пары (1, 1) и следовать по стрелкам (см. приведенный выше чертеж), то клетка с парой (3, 2) будет восьмой на этом пути.

Администратор была вне себя от счастья. Она даже запустила новую рекламную кампанию под лозунгом «Мы бесконечно рады всем!».

Профессор Финкельштейн-Островский-Канторович отметил, что существует огромное количество разных способов расселения в гостинице рациональных чисел:

– Вот один из этих способов. Определим для каждой дроби n/m «высоту», равную сумме числителя и знаменателя этой дроби. Другими словами, пусть высота h дроби n/m равна n + m. Наименьшая такая высота равна 2, причем есть только одна дробь с такой высотой – а именно 1/1. Есть два рациональных числа, высота которых равна 3; это числа 1/2 и 2/1. У чисел 1/3, 2/2 и 3/1 высота h = 4, а таких чисел, для которых h = 5, существует четыре: 1/4, 2/3, 2/3, 4/1. Таким образом, все рациональные числа можно расположить в порядке возрастания их высоты {28}.


Восемь этюдов о бесконечности. Математическое приключение

Головоломка

Докажите, что по предложенной выше схеме расселения число n/m будет жить в номере, соответствующем выражению ½ · (n + m – 2) (n + m – 1) + n.

Например, число 2/3 (n = 2, m = 3) окажется в номере ½ · (2 + 3 – 2) (2 + 3 – 1) + 2 = 8.

Подсказка:


Восемь этюдов о бесконечности. Математическое приключение

Слава о гостинице, которая способна разместить любую группу постояльцев, широко разошлась. Не имело значения, какая приезжала группа, конечная или бесконечная; не имело значения, были ли уже в гостинице другие жильцы; даже не имело значения, были ли все номера в гостинице уже забронированы. Как только приезжала новая группа постояльцев, им всем можно было найти место.

Но однажды случилось нечто, чего Омега совершенно не ожидала. Утром этого дня по электронной почте пришло сообщение с дальней планеты Дельта-Континуум: в гостиницу собирались приехать все числа, расположенные между 0 и 1. Администратор гостиницы, разумеется, знала, что между 0 и 1 заключено «довольно много» чисел, например³√3/2, е6 – π – π5, 1/2, 3/156, е/47, (5 + 13√2)/213… Тем не менее она не предполагала, что расселение всех их вызовет какие-либо затруднения. Разве в гостинице уже не жило бесконечное количество бесконечных множеств? Что же может быть трудного в размещении всего одной-единственной бесконечной группы?

Но затруднения возникли, и все ее попытки их устранить не дали никакого результата. Ей ничего не оставалось, как снова обратиться за помощью к профессору Финкельштейну-Островскому-Канторовичу или Сигме и Лямбде. Омега решила позвонить профессору. К ее удивлению и разочарованию, заслуженный профессор не только не смог предложить решения, но и установил, что решения у этой задачи попросту нет.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.