Характер физических законов - Ричард Фейнман Страница 32

Книгу Характер физических законов - Ричард Фейнман читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Характер физических законов - Ричард Фейнман читать онлайн бесплатно

Характер физических законов - Ричард Фейнман - читать книгу онлайн бесплатно, автор Ричард Фейнман

Итак, мы собираемся измерять интенсивность волнения, или, точнее говоря, энергию, генерируемую волнением в некоторой точке. Так как же меняется эта интенсивность, которую я стану обозначать I12, чтобы постоянно напоминать вам, что речь идет именно об интенсивности, а не о числе каких-либо частиц? Кривая I12, соответствующая двум открытым отверстиям, показана на диаграмме (рис. 31). Это очень интересная и внешне сложная кривая. Если мы станем менять положение детектора, мы получим интенсивность, меняющуюся очень быстро и очень странным образом. Возможно, вы знаете, чем это объясняется. Дело здесь в том, что волнение образуется из последовательности гребней и впадин, идущих из отверстия 1, и другой последовательности гребней и впадин, идущих из отверстия 2. Когда мы находимся в точке, равноотстоящей от обоих отверстий, обе волны (идущие от обоих отверстий) достигают своего максимума одновременно, и поэтому волнение здесь очень велико. Так что, если мы находимся точно посредине, волнение очень сильное. Если же поместить детектор в какую-нибудь точку, находящуюся от отверстия 2 на большем расстоянии, чем от отверстия 1, то волне, идущей из отверстия 2, понадобится больше времени, чтобы добраться до этой точки, чем волне, идущей от отверстия 1. Поэтому в тот момент, когда в эту точку приходит гребень очередной волны, идущей от отверстия 1, волна, идущая от отверстия 2, может еще не достичь своего максимума и даже может быть в самой низшей точке, так что под действием одной волны вода пытается подняться, а под действием другой – опуститься, в результате чего она вообще не волнуется, или практически не волнуется. Так что в этой точке мы наблюдаем низкую интенсивность волнения. Затем, если сдвинуться от центра еще дальше, наступает момент, когда запаздывание между волнами от двух источников таково, что гребни обеих волн попадают в нашу точку одновременно, хотя один из этих гребней и принадлежит на самом деле следующей по порядку волне. Вот поэтому мы и получаем кривую, на которой за всплеском интенсивности следует провал, потом опять всплеск, опять провал… и все это в зависимости от характера «интерференции» гребней и впадин. Понятие интерференции – еще один пример необычного употребления повседневных слов [25]. В физике возможна такая интерференция, в результате которой суммарное волнение оказывается сильнее индивидуальных. Но самое важное, что I12 не получается в виде суммы I1 и I2. Интерференция между двумя волнами приводит к усилению интенсивности в одном месте и к ослаблению в другом. Выяснить, на что похожи кривые I1 и I2, можно, закрывая по очереди одно из отверстий во втором экране и оставляя другое открытым. Очевидно, что в этом случае никакой интерференции нет, и соответствующие кривые показаны на рис. 31. Как нетрудно заметить, I1 имеет тот же характер, что и N1 в задаче с пулями, а I2 похожа на N2 и, несмотря на это, I12 не имеет ничего общего с N12.

Математика образования I12 на самом деле довольно интересна. Дело в том, что высота воды, которую мы будем обозначать через h, в случае когда открыты оба отверстия, равна сумме высот, создаваемых волнением в случае одного открытого отверстия 1 и в случае одного открытого отверстия 2. Поэтому, если из отверстия 2 приходит впадина волны, соответствующая высота h отрицательна, и она компенсирует положительную высоту h для волны, пришедшей из отверстия 1. Волнение воды можно характеризовать ее высотой, но оказывается, что интенсивность волнения в любом случае, например, тогда, когда открыты оба отверстия, не совпадает с высотой воды в данной точке, а пропорциональна квадрату этой высоты. И именно потому, что мы имеем дело с квадратами, получаем наши очень интересные кривые:

h12 = h1 + h2,

но

I12I1 + I2 (интерференция),

I12 = (h12)2,

I1 = (h1)2,

I2 = (h2)2.

Это о волнении воды. Теперь об электронах (рис. 32), и снова с самого начала. В качестве источника возьмем накаленную нить, в качестве экранов – вольфрамовые пластинки с отверстиями, а в качестве детектора – любую электрическую систему с чувствительностью, достаточной для того, чтобы зарегистрировать заряд, приносимый электроном, независимо от мощности нашего источника. Если вам больше нравится, мы можем взять фотоны, вместо вольфрамовых пластинок – черную бумагу (но, по правде говоря, это будет не очень хорошая замена, ибо в бумаге, как и во всяком другом волокнистом материале, невозможно сделать отверстия с очень ровными краями, и нам придется поискать что-нибудь получше), а в качестве детектора выбрать фотоумножитель, регистрирующий приход каждого фотона. Так что же произойдет в том или другом случае? Я расскажу вам лишь об опыте с электронами, потому что для фотонов все получается точно таким же образом.


Характер физических законов

Рис. 32


Прежде всего мы заметим, что наш электрический детектор, на выходе которого мы поставим достаточно мощный усилитель, все время щелкает: электроны попадают в него дискретно, строго по порциям. Каждый щелчок – это заряд определенной величины, и эта величина все время постоянна. Если вы уменьшите накал источника, щелчки будут все реже, но все равно заряд каждого щелчка тот же, что и раньше. Если же усилить накал, щелчки посыплются, как из мешка, и в усилителе возникнет затор. Поэтому, для того чтобы прибор, который вы собираетесь использовать в качестве детектора, работал, нужно выбрать такой накал нити, при котором щелчки происходили бы не слишком часто. Затем, если поместить в другом месте другой точно такой же детектор и проследить за их работой одновременно, можно заметить, что никогда не бывает двух щелчков, происходящих одновременно, по крайней мере если накал достаточно слаб, точность фиксации времени щелчка удовлетворительна. Если уменьшить интенсивность источника так, чтобы щелчки стали редкими и достаточно разнесенными друг от друга, то одновременных щелчков в обоих детекторах не бывает. А это значит, что возникающие события происходят дискретно, порциями, и что в данный момент времени такая порция может находиться лишь в одном месте. Итак, электроны или фотоны попадают в детектор по одному, дискретно, порциями. Поэтому мы можем поступить так же, как и в случае с пулями: мы можем измерить вероятность появления. Для этого нам нужно периодически менять положение детектора (конечно, если хочется, мы можем, хотя это и дорого, установить целую серию детекторов на поверхности последнего экрана и снимать кривую одновременно во всех точках), оставляя его в каждой конкретной точке, скажем, в течение часа, и записывать в конце этого часа число зарегистрированных электронов, а затем усреднить это число. Так что же мы получим для числа зарегистрированных электронов? Кривую N12 того же типа, что и в опыте с пулями? Кривая N12, соответствующая случаю, когда оба отверстия открыты, показана на рис. 32. Как видите, экспериментально установлено, что эта кривая оказывается такой же, как и в опыте с интерференцией волн. Но чему же соответствует эта кривая? Не энергии, заключенной в волнении, а вероятности попадания одной из этих порций в детектор.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.