Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг Страница 12
Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг читать онлайн бесплатно
Свет проходит сквозь щели А и В, достигает противоположного экрана и создает яркие пятна в точках С, D, Е и F (а также в точках выше и ниже, где Юнг обрывает схему). Знакомая картина? Как будто вы бросили камешки в пруд в точках А и В? Просто это более точная версия того, как выглядят интерферирующие между собой волны.
Даже если вы ничего не вынесете из этой дискуссии, вы должны знать, что множество ярких линий – верный признак того, что мы имеем дело с интерференцией. Чтобы интерферировать друг с другом, лучи света должны проходить и через правую, и через левую щели одновременно, а иначе у нас не получится сложного рисунка, который мы видим на противоположном экране.
В отличие от отражения, получить интерференцию от частиц никак не получается. Если взять в каждую руку по бильярдному шару и столкнуть их, то не получится мест, где шары интерферируют. Складываются и интерферируют только волны.
Итак, вот вам простое практическое руководство:
♦ две яркие линии = как частицы (Джекил);
♦ много ярких линий = как волны (Хайд).
Свет, безусловно, волна. Эксперимент Юнга с двойной щелью доказывает это окончательно и бесповоротно. Ну что, вопрос закрыт?
Размечтались. Ньютон был абсолютно убежден, что свет состоит из частиц, и он был не одинок. В 1905 году Альберт Эйнштейн показал, что свет на самом деле состоит из фотонов. Такие громкие заявления нуждаются в веских доказательствах, какие бы знаменитости и знатоки их ни делали, поэтому Эйнштейн обосновал свою точку зрения с помощью так называемого фотоэффекта.
Ученые заметили, что если посветить на металлы ультрафиолетовым лучом, выскакивают электроны. С другой стороны, если подставлять те же самые металлы под менее энергичные длины волн, ничего не происходит. Эйнштейн сделал вывод, что единственное возможное объяснение фотоэффекта – фундаментальное: свет состоит из отдельных частичек, фотонов, каждая из которых передает свою энергию одному-единственному электрону. Это как стучать одним бильярдным шаром по другому, а значит, куда больше похоже на частицы, чем на волны, верно? Поскольку красный, зеленый или синий свет (сделанный из отдельных фотончиков) такой слабенький, ни у одного фотона не хватает энергии, чтобы вышибить электрон, – именно поэтому наблюдаемый эффект замечен только в ультрафиолетовом свете, при более высоких энергиях.
Эйнштейн получил за это открытие Нобелевскую премию, практически каждая вводная книга по этой теме воздает ему должное как человеку, доказавшему, что свет ведет себя как поток частиц, однако, как выяснилось, вердикт не был окончательным. В 1969 году несколько исследовательских групп показали, что фотоэффект можно объяснить и на основе волновой гипотезы. Эйнштейн прекрасно объяснил фотоэффект, но оказалось, что его объяснение не единственное. Просто он рассказал нам прелестную историю со счастливым концом. Хотя в его доказательстве было несколько логических погрешностей, оказалось, что он все равно был прав. Множество экспериментов впоследствии показали, что свет определенно ведет себя как поток частиц.
Представляется, что все эти споры стоят в одном ряду с вопросами, ответы на которые примерно так же судьбоносны: «Сколько ангелов уместится на кончике иглы?» и «Куда, куда вы удалились, весны моей златые дни?» И правда, кому интересно, что такое свет на самом деле – волны или частицы? К тому же, если вдуматься, не такое уж это и противоречие. Вот, например, океанские воды уж точно ведут себя как волны, но мы-то знаем, что на самом деле они состоят из отдельных (вроде частиц) молекул.
Может быть, и свет ведет себя так же? Может быть, он только кажется непрерывной волной – примерно как кажется непрерывной картинка на экране телевизора? Если внимательно присмотреться к телевизору, видно, что изображение «на самом деле» состоит из отдельных пикселей.
Может быть, свет только кажется волной, потому что в нем так много фотонов? В контексте опыта с двойной щелью, может быть, ужасно много фотонов проходит в левую щель, ужасно много фотонов – в правую, а потом две волны интерферируют друг с другом.
Ах, если бы жизнь была так проста.
Мы уже говорили о том, что физическая интуиция в квантовой механике не помощница. Надеемся, вы не выбросили надувные нарукавники, потому что сейчас мы бросим вас на глубину.
Множество фотонов проходят в каждую щель и интерферируют друг с другом, причем ведут себя как волны. Мистер Хайд, который хочет вернуться в состояние доктора Джекила, кое-что задумал. «Может быть, – свирепо рычит он, – если снизить интенсивность луча, фотоны будут пролезать в щели по одному. А отдельный фотон уж точно не сможет вести себя как волна, ему ведь не с чем интерферировать!»
Бедный, легковерный простак! Посмотрим, что получается, когда он претворяет в жизнь свой завиральный проект.
Как и планировалось, он приглушает луч и удостоверяется в том, что фотоны попадают в аппарат строго по одному. Как и раньше, на заднем экране есть детектор, который засекает каждый попадающий в экран фотон. Хотя результаты должны накопиться, а происходит это не сразу, Хайд все равно видит, какой рисунок они образуют на дальнем экране.
Хайд видит на дальнем экране рисунок из нескольких полос, который показывает, что фотонный луч и в самом деле ведет себя как волна. Попадающие в аппарат фотоны с чем-то интерферируют. Но ведь луч настроен так, что выпускает фотоны по одному. Единственное логическое объяснение – что фотоны интерферируют сами с собой. Каждый фотон проходит сквозь обе щели одновременно. Фрост ошибался. Если ты фотон, то тебе по силам пройти по обеим дорогам, а не только по той, которая покажется нехоженой.
Мы знаем, что фотон умеет вести себя и как волна, и как частица. Понимание, что фотон способен проявлять оба качества, не объясняет, откуда он знает, когда проявлять какое. В 1978 году Джон Арчибальд Уилер из Принстонского университета предложил интересный опыт, который позволил увидеть, как фотоны поведут себя в опыте с двойной щелью, если мы изменим правила игры на полдороге. «Представим себе, – подумал Уиллер, – что задний экран можно убрать, а за ним на некотором расстоянии стоят два телескопчика, каждый из которых точно нацелен на одну из двух щелей».
Если убрать экран, то, глядя в тот или иной телескопчик, мы точно скажем, в какую щель проскочил тот или иной фотон. А значит, каждому фотону придется проскакивать в определенную щель, а не в обе. Иначе говоря, можно заставить фотоны вести себя как частицы, если убрать экран, – а значит, превратить экспериментатора обратно из Хайда в Джекила. Если мы поставим экран на место, то фотоны начнут снова вести себя как волны – и снова воцарится мерзопакостный Хайд.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments